AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Acceleration of bidirectional sulfur conversion kinetics and inhibition of lithium dendrites growth via a “ligand-induced” transformation strategy

Wei Zhou1,§Minzhe Chen1,§Dengke Zhao1,§Jiacheng Dan1Chuheng Zhu1Wen Lei2( )Li-Jun Ma3Nan Wang4Xinghua Liang5Ligui Li1( )
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510631, China
Siyuan laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China

§ Wei Zhou, Minzhe Chen, and Dengke Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

A controllable and versatile strategy is proposed to manipulate the d-band center and electronic properties of bimetallic oxides (NiFe2O4) by a “ligand-induced” (triphenyl acid (TMA)) transformation strategy. Experimental and theoretical results verified that the as-prepared NiFe2O4-TMA could promote the sulfur reduction and Li2S decomposition reactions and simultaneously suppress lithium dendrite growth during the charge/discharge procedures.

Abstract

The introduction of materials with dual-functionalities, i.e., the catalytic (adsorption) features to inhibit shuttle effects at the cathode side, and the capability to facilitate homogenous Li-ion fluxes at the anode side, is a promising strategy to realize high performance lithium-sulfur batteries (LSBs). Herein, a facile and rational organic “ligand-induced” (trimesic acid (TMA)) transformation tactic is proposed, which achieves the regulation of electronic performance and d-band center of bimetallic oxides (NiFe2O4) to promote bidirectional sulfur conversion kinetics and stabilize the Li plating/striping during the charge/discharge process. The battery assembled with NiFe2O4-TMA modified separator exhibits a remarkable initial specific capacity of 1476.6 mAh·g−1 at 0.1 C, outstanding rate properties (661.1 mAh·g−1 at 8.0 C), and excellent cycling ability. The “ligand-induced” transformation tactic proposed in this work will open a whole new possibility for tuning the electronic structure and d-band center to enhance the performance of LSBs

Electronic Supplementary Material

Download File(s)
12274_2023_5720_MOESM1_ESM.pdf (4.5 MB)
12274_2023_5720_MOESM2_ESM.pdf (947.6 KB)

References

[1]

Zhao, W. L.; Lei, Y. J.; Zhu, Y. P.; Wang, Q.; Zhang, F.; Dong, X. C.; Alshareef, H. N. Hierarchically structured Ti3C2Tx MXene paper for Li-S batteries with high volumetric capacity. Nano Energy 2021, 86, 106120.

[2]

Gao, H. C.; Miao, S. H.; Shi, M. Q.; Mao, X. X.; Zhu, X. J. In situ-formed cobalt nanoparticles embedded nitrogen-doped hierarchical porous carbon as sulfur host for high-performance Li-S batteries. Electrochim. Acta 2022, 403, 139717.

[3]

Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

[4]

Zhang, Y. G.; Liu, J. B.; Wang, J. Y.; Zhao, Y.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629.

[5]

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

[6]

Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013.

[7]

Shi, Z. X.; Ding, Y. F.; Zhang, Q.; Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: From strategic probing to mechanistic understanding. Adv. Energy Mater. 2022, 12, 2201056.

[8]

Peng, L.; Zhang, M. K.; Zheng, L. Y.; Yuan, Q. C.; Yu, Z. J.; Shen, J. H.; Chang, Y.; Wang, Y.; Li, A. J. Regulated Li2S deposition toward rapid kinetics Li-S batteries by a separator modified by CeO2-decorated porous carbon nanostructure. Small Methods 2022, 6, 2200332.

[9]

Yang, S.; Zhang, J. F.; Tan, T. Z.; Zhao, Y.; Liu, N.; Li, H. P. A 3D MoS2/graphene microsphere coated separator for excellent performance Li-S batteries. Materials 2018, 11, 2064.

[10]

Liu, Y. M.; Qin, X. Y.; Zhang, S. Q.; Liang, G. M.; Kang, F. Y.; Chen, G. H.; Li, B. H. Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 26264–26273.

[11]

Liu, W.; Zhang, K.; Ma, L.; Ning, R. Q.; Chen, Z. X.; Li, J.; Yan, Y. G.; Shang, T. T.; Lyu, Z.; Li, Z. et al. An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy Storage Mater. 2022, 49, 1–10.

[12]

Zhou, C.; Li, M.; Hu, N. T.; Yang, J. H.; Li, H.; Yan, J. W.; Lei, P. Y.; Zhuang, Y. P.; Guo, S. W. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li-S batteries. Adv. Funct. Mater. 2022, 32, 2204635.

[13]

Chen, H. H.; Xiao, Y. W.; Chen, C.; Yang, J. Y.; Gao, C.; Chen, Y. S.; Wu, J. S.; Shen, Y.; Zhang, W. N.; Li, S. et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl. Mater. Interfaces 2019, 11, 11459–11465.

[14]

Fang, D. L.; Wang, Y. L.; Liu, X. Z.; Yu, J.; Qian, C.; Chen, S. M.; Wang, X.; Zhang, S. J. Spider-web-inspired nanocomposite-modified separator: Structural and chemical cooperativity inhibiting the shuttle effect in Li-S batteries. ACS Nano 2019, 13, 1563–1573.

[15]

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

[16]

Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater. 2019, 18, 375–381.

[17]

Wang, H.; Yan, G. J.; Li, M. K.; Ji, H. F.; Feng, Y.; Shi, J. J.; Zhang, X. J. Nucleophilic ring-opening of thiolactones: A facile method for sulfhydrylization of a carbon nanotube-based cathode toward high-performance Li-S batteries. ACS Sustainable Chem. Eng. 2022, 10, 5005–5014.

[18]

Sun, T. T.; Zhao, X. M.; Li, B.; Shu, H. B.; Luo, L. P.; Xia, W. L.; Chen, M. F.; Zeng, P.; Yang, X. K.; Gao, P. et al. NiMoO4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery. Adv. Funct. Mater. 2021, 31, 2101285.

[19]

Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, e2005967.

[20]

Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2017, 139, 171–178.

[21]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Yang, X. Z.; Wei, C. H.; Wang, M. L.; Ding, Y. F.; Sun, J. Y. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv. Mater. 2021, 33, e2103050.

[22]

Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

[23]

Yang, D. W.; Li, M. Y.; Zheng, X. J.; Han, X.; Zhang, C. Q.; Jacas Biendicho, J.; Llorca, J.; Wang, J. A.; Hao, H. C.; Li, J. S. et al. Phase engineering of defective copper selenide toward robust lithium-sulfur batteries. ACS Nano 2022, 16, 11102–11114.

[24]

Hu, L. Y.; Dai, C. L.; Liu, H.; Li, Y.; Shen, B. L.; Chen, Y. M.; Bao, S. J.; Xu, M. W. Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800709.

[25]

Wang, Z. G.; Yu, K.; Feng, Y.; Qi, R. J.; Ren, J.; Zhu, Z. Q. VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292.

[26]

Song, X.; Chen, G. P.; Wang, S. Q.; Huang, Y. P.; Jiang, Z. Y.; Ding, L. X.; Wang, H. H. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 26274–26282.

[27]

Yang, J. L.; Zhao, S. X.; Lu, Y. M.; Zeng, X. T.; Lv, W.; Cao, G. Z. In-situ topochemical nitridation derivative MoO2-Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-sulfur batteries. Nano Energy 2020, 68, 104356.

[28]

Ahn, H.; Kim, Y.; Bae, J.; Kim, Y. K.; Kim, W. B. A multifunctional SnO2-nanowires/carbon composite interlayer for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 401, 126042.

[29]

Yu, Y.; Yan, M.; Dong, W. D.; Wu, L.; Tian, Y. W.; Deng, Z.; Chen, L. H.; Hasan, T.; Li, Y.; Su, B. L. Optimizing inner voids in yolk–shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chem. Eng. J. 2021, 417, 129241.

[30]

Saroha, R.; Heo, J.; Liu, Y.; Angulakshmi, N.; Lee, Y.; Cho, K. K.; Ahn, H. J.; Ahn, J. H. V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries. Chem. Eng. J. 2022, 431, 134205.

[31]

Zhang, L. L.; Wan, F.; Cao, H. M.; Liu, L. L.; Wang, Y. J.; Niu, Z. Q. Integration of binary active sites: Co3V2O8 as polysulfide traps and catalysts for lithium-sulfur battery with superior cycling stability. Small 2020, 16, e1907153.

[32]

Li, Z. W.; Zhang, Q.; Hencz, L.; Liu, J.; Kaghazchi, P.; Han, J. S.; Wang, L.; Zhang, S. Q. Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery. Nano Energy 2021, 89, 106331.

[33]

Chen, H.; Dong, W. D.; Xia, F. J.; Zhang, Y. J.; Yan, M.; Song, J. P.; Zou, W.; Liu, Y.; Hu, Z. Y.; Liu, J. et al. Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. Chem. Eng. J. 2020, 381, 122746.

[34]

Chen, C.; Jiang, Q. B.; Xu, H. F.; Zhang, Y. P.; Zhang, B. K.; Zhang, Z. Y.; Lin, Z.; Zhang, S. Q. Ni/SiO2/graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries. Nano Energy 2020, 76, 105033.

[35]

Lu, K.; Zhang, H.; Gao, S. Y.; Ma, H. Y.; Chen, J. Z.; Cheng, Y. W. Manipulating polysulfide conversion with strongly coupled Fe3O4 and nitrogen doped carbon for stable and high capacity lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1807309.

[36]

Wang, B. X.; Liu, C. X.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 2022, 15, 4132–4136.

[37]

Wang, N.; Chen, B.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; He, C. N.; Zhao, N. Q. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption–electrocatalysis function. Nano Energy 2019, 60, 332–339.

[38]

Liu, W. X.; Zheng, D.; Deng, T. Q.; Chen, Q. L.; Zhu, C. Z.; Pei, C. J.; Li, H.; Wu, F. F.; Shi, W. H.; Yang, S. W. et al. Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angew. Chem., Int. Ed. 2021, 60, 10614–10619.

[39]

Wang, R. R.; Chen, Z. L.; Sun, Y. Q.; Chang, C.; Ding, C. F.; Wu, R. B. Three-dimensional graphene network-supported Co,N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chem. Eng. J. 2020, 399, 125686.

[40]

Zhou, T. T.; Zhang, T.; Zeng, Y.; Zhang, R.; Lou, Z.; Deng, J. N.; Wang, L. L. Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sens. Actuators B: Chem. 2018, 255, 1436–1444.

[41]

Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 14117–14123.

[42]

Lai, X. Y.; Cao, K.; Shen, G. X.; Xue, P.; Wang, D.; Hu, F.; Zhang, J. L.; Yang, Q. F.; Wang, X. Z. Ordered mesoporous NiFe2O4 with ultrathin framework for low-ppb toluene sensing. Sci. Bull. 2018, 63, 187–193.

[43]

Liu, Z.; Tang, B.; Gu, X. C.; Liu, H.; Feng, L. G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170.

[44]

Guo, P. Q.; Chen, W. X.; Zhou, Y. F.; Xie, F. Y.; Qian, G. Y.; Jiang, P. F.; He, D. Y.; Lu, X. Transition metal d-band center tuning by interfacial engineering to accelerate polysulfides conversion for robust lithium-sulfur batteries. Small 2022, 18, e2205158.

[45]

Shen, Z. H.; Zhang, Z. L.; Li, M.; Yuan, Y. F.; Zhao, Y.; Zhang, S.; Zhong, C. L.; Zhu, J.; Lu, J.; Zhang, H. G. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 2020, 14, 6673–6682.

[46]

Guo, D.; Ming, F. W.; Su, H.; Wu, Y. Q.; Wahyudi, W.; Li, M. L.; Hedhili, M. N.; Sheng, G.; Li, L. J.; Alshareef, H. N. et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478–485.

[47]

Zou, Y. H.; Zhang, W.; Chen, N.; Chen, S.; Xu, W. J.; Cai, R. S.; Brown, C. L.; Yang, D. J.; Yao, X. D. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity. ACS Nano 2019, 13, 2062–2071.

[48]

Fan, Q.; Liu, W.; Weng, Z.; Sun, Y. M.; Wang, H. L. Ternary hybrid material for high-performance lithium-sulfur battery. J. Am. Chem. Soc. 2015, 137, 12946–12953.

[49]

Zhang, Z.; Basu, S.; Zhu, P. P.; Zhang, H.; Shao, A. H.; Koratkar, N.; Yang, Z. Y. Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. Carbon 2019, 142, 32–39.

[50]

Qie, L.; Manthiram, A. Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium-sulfur batteries with superior stability. Chem. Commun. 2016, 52, 10964–10967.

[51]

Zhang, D.; Luo, Y. X.; Liu, J. X.; Dong, Y.; Xiang, C.; Zhao, C. K.; Shu, H. B.; Hou, J. H.; Wang, X. Y.; Chen, M. F. ZnFe2O4-Ni5P4 Mott–Schottky heterojunctions to promote kinetics for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2022, 14, 23546–23557.

[52]

Zhang, W. F.; Xu, B. Y.; Zhang, L. H.; Li, W.; Li, S. L.; Zhang, J. X.; Jiang, G. X.; Cui, Z. M.; Song, H. Y.; Grundish, N. et al. Co4N-decorated 3D wood-derived carbon host enables enhanced cathodic electrocatalysis and homogeneous lithium deposition for lithium-sulfur full cells. Small 2021, 18, 2105664.

[53]

Yu, B.; Ma, F.; Chen, D. J.; Srinivas, K.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Zhang, W. L.; Wang, Z. G.; He, W. D. et al. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries. J. Mater. Sci. Technol. 2021, 90, 37–44.

[54]

Tong, Z. M.; Huang, L.; Liu, H. P.; Lei, W.; Zhang, H. J.; Zhang, S. W.; Jia, Q. L. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 2021, 31, 2010455.

[55]

Xue, L. X.; Li, Y. Y.; Hu, A. J.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Yan, Y. C.; Huang, J. W.; Yang, C. T.; Wang, X. F. et al. In situ/operando Raman techniques in lithium-sulfur batteries. Small Struct. 2022, 3, 2100170.

[56]

Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

Nano Research
Pages 9496-9506
Cite this article:
Zhou W, Chen M, Zhao D, et al. Acceleration of bidirectional sulfur conversion kinetics and inhibition of lithium dendrites growth via a “ligand-induced” transformation strategy. Nano Research, 2023, 16(7): 9496-9506. https://doi.org/10.1007/s12274-023-5720-0
Topics:

776

Views

3

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 January 2023
Revised: 31 March 2023
Accepted: 10 April 2023
Published: 13 May 2023
© Tsinghua University Press 2023
Return