Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The concentration of biomarkers in sweat can be used to evaluate human health, making efficient sweat sensing a focus of research. While flow channel design is often used to detect sweat velocity, it is rarely incorporated into the sensing of biomarkers, limiting the richness of sensing results. In this study, we report a time sequential sensing scheme for uric acid in sweat through a sequential design of Tesla valve channels. Graphene electrodes for detecting uric acid and directional Tesla valve flow channels were fabricated using laser engraving technology to realize time sequential sensing. The performance of the channels was verified through simulation. The time sequential detection of uric acid concentration in sweat can help researchers improve the establishment of human health management systems through flexible wearable devices.
Mena-Bravo, A.; de Castro, M. D. L. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharm. Biomed. Anal. 2014, 90, 139–147.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.
Yang, Y. R.; Song, Y.; Bo, X. J.; Min, J. H.; Pak, O. S.; Zhu, L. L.; Wang, M. Q.; Tu, J. B.; Kogan, A.; Zhang, H. X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224.
Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.
Kim, S.; Lee, B.; Reeder, J. T.; Seo, S. H.; Lee, S. U.; Hourlier-Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y. S. et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915.
Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371.
He, W. Y.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Lu, W. D.; Liang, X. P.; Zhang, X.; Yang, F. C.; Zhang, Y. Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 2019, 5, eaax0649.
Nyein, H. Y. Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T. S.; Jansson, E.; Ahn, C. H.; Hangasky, J. A.; Zhao, J. Q.; Lin, Y. J. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 2019, 5, eaaw9906.
Wang, M. Q.; Yang, Y. R.; Min, J. H.; Song, Y.; Tu, J. B.; Mukasa, D.; Ye, C.; Xu, C. H.; Heflin, N.; Mccune, J. S. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235.
Mogera, U.; Guo, H.; Namkoong, M.; Rahman, S.; Nguyen, T.; Tian, L. M. Wearable plasmonic paper-based microfluidics for continuous sweat analysis. Sci. Adv. 2022, 8, eabn1736.
Pei, X. Y.; Sun, M. M.; Wang, J. J.; Bai, J.; Bo, X. J.; Zhou, M. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring. Small 2022, 18, 2205061.
Nyein, H. Y. Y.; Bariya, M.; Tran, B.; Ahn, C. H.; Brown, B. J.; Ji, W. B.; Davis, N.; Javey, A. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 2021, 12, 1823.
Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.
Kim, J.; Im, S.; Kim, J. H.; Kim, S. M.; Lee, S. M.; Lee, J.; Im, J. P.; Woo, J.; Moon, S. E. Artificial perspiration membrane by programmed deformation of thermoresponsive hydrogels. Adv. Mater. 2020, 32, 1905901.
Son, J.; Bae, G. Y.; Lee, S.; Lee, G.; Kim, S. W.; Kim, D.; Chung, S.; Cho, K. Cactus-spine-inspired sweat-collecting patch for fast and continuous monitoring of sweat. Adv. Mater. 2021, 33, 2102740.
Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 2017, 6, 1601355.
Nguyen, O. M.; Abouezzi, J.; Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat. Commun. 2021, 12, 2884.
You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.
Hu, P. L.; Wang, P. F.; Liu, L.; Ruan, X. D.; Zhang, L. J.; Xu, Z. B. Numerical investigation of Tesla valves with a variable angle. PHYS FLUIDS 2022, 34, 033603.