AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid

Yumei Liu1,2,§Tiantian Wu3,§Hongfei Cheng4Jiawen Wu2Xiaodong Guo1( )Hong Jin Fan2( )
College of Chemical Engineering, Sichuan University, Chengdu 610065, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Singapore 138634, Singapore

§ Yumei Liu and Tiantian Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Structural modulation via Zn2+ cooperation promotes the exposure of active plane (002) in the Bi2O3 nanosheet and the formation as well as stabilization of the OCHO* intermediate. Therefore, high Faradaic efficiency of formate (> 90%) in a wide potential range from −0.8 to −1.3 V is obtained in Bi2O3 with Zn doping (Zn-BO).

Abstract

Formic acid is considered one of the most economically viable products for electrocatalytic CO2 reduction reaction (CO2RR). However, developing highly active and selective electrocatalysts for effective CO2 conversion remains a grand challenge. Herein, we report that structural modulation of the bismuth oxide nanosheet via Zn2+ cooperation has a profound positive effect on exposure of the active plane, thereby contributing to high electrocatalytic CO2RR performance. The obtained Zn-Bi2O3 catalyst demonstrates superior selectivity towards formate generation in a wide potential range; a high Faradaic efficiency of 95% and a desirable partial current density of around 20 mA·cm−2 are obtained at −0.9 V (vs. reversible hydrogen electrode (RHE)). As proposed by density functional theory calculations, Zn substitution is the most energetically feasible for forming and stabilizing the key OCHO* intermediate among the used metal ions. Moreover, the more negative adsorption energy of OCHO* and the relatively low energy barrier for the desorption of HCOOH* are responsible for the enhanced activity and selectivity.

Electronic Supplementary Material

Download File(s)
12274_2023_5824_MOESM1_ESM.pdf (4 MB)
12274_2023_5824_MOESM2_ESM.pdf (1.3 MB)

References

[1]

Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.

[2]

Cheng, H. F.; Liu, Y. M.; Wu, J. W.; Zhang, Z.; Li, X. G.; Wang, X.; Fan, H. J. Concurrent H2 generation and formate production assisted by CO2 absorption in one electrolyzer. Small Methods 2021, 5, 2100871.

[3]

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

[4]

Shen, C. Q.; Wang, P. T.; Li, L. G.; Huang, X. Q.; Shao, Q. Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Res. 2022, 15, 528–534.

[5]

Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

[6]

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

[7]

Wei, Z. N.; Yue, S.; Gao, S. Y.; Cao, M. N.; Cao, R. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano Res. 2023, 16, 7777–7783.

[8]

Fan, L.; Xia, C.; Zhu, P.; Lu, Y. Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

[9]

Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo, T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2019, 2, 702–708.

[10]

Deng, P. L.; Yang, F.; Wang, Z. T.; Chen, S. H.; Zhou, Y. Z.; Zaman, S.; Xia, B. Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2020, 59, 10807–10813.

[11]

Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.

[12]

Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal-CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

[13]

Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

[14]

Li, H. X.; Yue, X.; Qiu, Y. S.; Xiao, Z.; Yu, X. B.; Xue, C.; Xiang, J. H. Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst. Mater. Today Energy 2021, 21, 100797.

[15]

Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

[16]

Gao, N.; Wang, F. M.; Ding, J. W.; Sendeku, M. G.; Yu, P.; Zhan, X. Y.; Cai, S. F.; Xiao, C. H.; Yang, R.; He, J. et al. Intercalated gold nanoparticle in 2D palladium nanosheet avoiding CO poisoning for formate production under a wide potential window. ACS Appl. Mater. Interfaces 2022, 14, 10344–10352.

[17]

Xie, J. F.; Wang, X. Y.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Reversible aqueous zinc-CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem., Int. Ed. 2018, 57, 16996–17001.

[18]

Chen, Z.; Fan, T. T.; Zhang, Y. Q.; Xiao, J.; Gao, M. R.; Duan, N. Q.; Zhang, J. W.; Li, J. H.; Liu, Q. X.; Yi, X. D. et al. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Appl. Catal. B: Environ. 2020, 261, 118243.

[19]

Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

[20]

Yang, Z. N.; Oropeza, F. E.; Zhang, K. H. L. P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Mater. 2020, 8, 060901.

[21]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[22]

Li, N. H.; Yan, P.; Tang, Y. H.; Wang, J. H.; Yu, X. Y.; Wu, H. B. In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Appl. Catal. B: Environ. 2021, 297, 120481.

[23]

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

[24]

Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 2017, 7, 5071–5077.

[25]

Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

[26]

Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

[27]

Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

[28]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[29]

Ren, J. J.; Zheng, L. C.; Su, Y. M.; Meng, P. P.; Zhou, Q. Y.; Zeng, H.; Zhang, T.; Yu, H. J. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chem. Eng. J. 2022, 445, 136778.

[30]

Liu, S.; Cao, Y.; Liu, H.; Wang, H. L.; Zhang, B. S.; Zhang, Y. M.; Zhang, L. H.; Zhang, S.; Sun, J. Efficient electrochemical reduction of CO2 promoted by the electrospun Cu1.96S/Cu tandem catalyst. Nanoscale 2021, 13, 16986–16994.

[31]

Li, M. L.; Li, W. B.; Song, W. T.; Wang, C.; Yao, Y. F.; Wu, C. P.; Luo, W. J.; Zou, Z. G. Do Cu substrates participate in Bi electrocatalytic CO2 reduction? ChemNanoMat 2021, 7, 128–133.

[32]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

[33]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[34]

Li, L.; Cai, F. F.; Qi, F. X. Y.; Ma, D. K. Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J. Alloys Compd. 2020, 841, 155789.

[35]

Liu, G. B.; Li, Z. H.; Shi, J. J.; Sun, K.; Ji, Y. J.; Wang, Z. G.; Qiu, Y. F.; Liu, Y. Y.; Wang, Z. J.; Hu, P. A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Appl. Catal. B: Environ. 2020, 260, 118134.

[36]

Yang, G.; Liang, Y. J.; Wang, K.; Yang, J.; Zeng, Z. K.; Xu, R.; Xie, X. J. Simultaneous introduction of 0D Bi nanodots and oxygen vacancies onto 1D Bi6Mo2O15 sub-microwires for synergistically enhanced photocatalysis. Chem. Eng. J. 2021, 409, 128098.

[37]

Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.

[38]

Lee, C. W.; Hong, J. S.; Yang, K. D.; Jin, K.; Lee, J. H.; Ahn, H. Y.; Seo, H.; Sung, N. E.; Nam, K. T. Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 2018, 8, 931–937.

[39]

Ma, M.; Kim, S.; Chorkendorff, I.; Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 2020, 11, 8854–8861.

Nano Research
Pages 10803-10809
Cite this article:
Liu Y, Wu T, Cheng H, et al. Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid. Nano Research, 2023, 16(8): 10803-10809. https://doi.org/10.1007/s12274-023-5824-6
Topics:

697

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 27 February 2023
Revised: 29 April 2023
Accepted: 09 May 2023
Published: 05 June 2023
© Tsinghua University Press 2023
Return