Formic acid is considered one of the most economically viable products for electrocatalytic CO2 reduction reaction (CO2RR). However, developing highly active and selective electrocatalysts for effective CO2 conversion remains a grand challenge. Herein, we report that structural modulation of the bismuth oxide nanosheet via Zn2+ cooperation has a profound positive effect on exposure of the active plane, thereby contributing to high electrocatalytic CO2RR performance. The obtained Zn-Bi2O3 catalyst demonstrates superior selectivity towards formate generation in a wide potential range; a high Faradaic efficiency of 95% and a desirable partial current density of around 20 mA·cm−2 are obtained at −0.9 V (vs. reversible hydrogen electrode (RHE)). As proposed by density functional theory calculations, Zn substitution is the most energetically feasible for forming and stabilizing the key OCHO* intermediate among the used metal ions. Moreover, the more negative adsorption energy of OCHO* and the relatively low energy barrier for the desorption of HCOOH* are responsible for the enhanced activity and selectivity.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2023, 16(8): 10803-10809
Published: 05 June 2023
Downloads:41
Total 1