AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications

Qi Gao1,2Lili Tan2Zhihao Wen2Daidi Fan1Junfeng Hui1( )Peng-peng Wang2( )
Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

This article summarizes the recent development of chiral inorganic nanomaterials and their selective interaction with living entities, providing insights into the potential applications in biomedical and engineering applications.

Abstract

Chirality is an intriguing and fundamental property of natural matter, which is especially crucial in supporting the processes of living systems. The selective interactions between natural chiral compounds are widespread at all levels in living entities and play a vital role in biochemical reactions. The cutting-edge advancements in synthetic chiral inorganic nanostructures have led to significant progress in their applications within biological systems. These developments have unraveled chirality-dependent interactions at the nanoscale and molecular scale, providing a better understanding of intricate process of chiral selection in biological systems and demonstrating the potential of chiral inorganic nanostructures for life science applications. Herein, we summarize recent progress in understanding the chirality origin of inorganic chiral nanoparticles and the development of wet-chemical synthesis. We also discuss the captivating interaction between chiral inorganic nanostructures and biological entities at various scales. Finally, we discuss the challenges and potential of functional chiral nanomaterials for future biomedical and bioengineering applications, offering design ideas and a forecast for their future impact.

References

[1]
Thomson, W.; Kelvin, B. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light; Cambridge University Press: New York, 2010.
[2]

Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[3]

Ni, B.; Cölfen, H. Chirality communications between inorganic and organic compounds. SmartMat 2021, 2, 17–32.

[4]

Visheratina, A.; Kotov, N. A. Inorganic nanostructures with strong chiroptical activity. CCS Chem. 2020, 2, 583–604.

[5]

Kuang, H.; Xu, C. L.; Tang, Z. Y. Emerging chiral materials. Adv. Mater. 2020, 32, 2005110.

[6]

Shukla, N.; Gellman, A. J. Chiral metal surfaces for enantioselective processes. Nat. Mater. 2020, 19, 939–945.

[7]
Barron, L. D. Chirality and life. In Strategies of Life Detection. Botta, O.; Bada, J. L.; Gomez-Elvira, J.; Javaux, E.; Selsis, F.; Summons, R. , Eds.; Springer: New York, 2008; pp 187–201.
[8]

Ozturk, S. F.; Sasselov, D. D. On the origins of life’s homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119.

[9]

Vianna, F. S. L.; Kowalski, T. W.; Fraga, L. R.; Sanseverino, M. T. V.; Schuler-Faccini, L. The impact of thalidomide use in birth defects in Brazil. Eur. J. Med. Genet. 2017, 60, 12–15.

[10]

Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. Part C:Embryo Today 2015, 105, 140–156.

[11]

Kumar, J.; Liz-Marzán, L. M. Recent advances in chiral plasmonics—Towards biomedical applications. Bull. Chem. Soc. Japan 2019, 92, 30–37.

[12]

Jin, X.; Zhou, M. H.; Han, J. L.; Li, B.; Zhang, T. Y.; Jiang, S.; Duan, P. F. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 2022, 15, 1047–1053.

[13]

Zhan, P. F.; Wang, Z. G.; Li, N.; Ding, B. Q. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates. ACS Catal. 2015, 5, 1489–1498.

[14]

Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K. X.; Shi, X. H.; Wan, K. W.; Ai, J.; Lv, J. W.; Wang, D. W. et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 2020, 11, 4790.

[15]

Zhou, C.; Zhang, S. Y.; Ai, J.; Li, P.; Zhao, Y. J.; Li, B. J.; Han, L.; Duan, Y. Y.; Che, S. A. Enantioselective interaction between cells and chiral hydroxyapatite films. Chem. Mater. 2022, 34, 53–62.

[16]

Shao, Y. N.; Yang, G. L.; Lin, J. Y.; Fan, X. F.; Guo, Y.; Zhu, W. T.; Cai, Y.; Huang, H. Y.; Hu, D.; Pang, W. et al. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021, 11, 9262–9295.

[17]

Ma, W.; Xu, L. G.; Wang, L. B.; Xu, C. L.; Kuang, H. Chirality-based biosensors. Adv. Funct. Mater. 2019, 29, 1805512.

[18]

Aboul-Enein, H. Y.; Bounoua, N.; Rebizi, M.; Wagdy, H. Application of nanoparticles in chiral analysis and chiral separation. Chirality 2021, 33, 196–208.

[19]

Zhang, H. Y.; Li, S.; Qu, A. H.; Hao, C. L.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Engineering of chiral nanomaterials for biomimetic catalysis. Chem. Sci. 2020, 11, 12937–12954.

[20]

Han, B.; Zhu, Z. N.; Tang, Z. Y.; Zhou, Y. L.; Li, Z. T. Chiral inorganic nanoparticles: New opportunities in bioapplication. Chin. Sci. Bull. 2013, 58, 2425–2435.

[21]

Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.

[22]

Dryzun, C.; Avnir, D. On the abundance of chiral crystals. Chem. Commun. 2012, 48, 5874–5876.

[23]

Duan, T. W.; Ai, J.; Chen, S. J.; He, G. F.; Guo, X. J.; Han, L.; Che, S. N.; Duan, Y. Y. Chiral CdSe/CdS quantum dot (in rod)-light-emitting diodes with circularly polarized electroluminescence. Nano Res. 2022, 15, 9573–9577.

[24]

Ben-Moshe, A.; Govorov, A. O.; Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. 2013, 125, 1313–1317.

[25]

Ben-Moshe, A.; Wolf, S. G.; Sadan, M. B.; Houben, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 2014, 5, 4302.

[26]

Wang, P. P.; Yu, S. J.; Govorov, A. O.; Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 2017, 8, 14312.

[27]

Kuno, J.; Miyake, K.; Katao, S.; Kawai, T.; Nakashima, T. Enhanced enantioselectivity in the synthesis of mercury sulfide nanoparticles through Ostwald ripening. Chem. Mater. 2020, 32, 8412–8419.

[28]

Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A. O.; Purcell-Milton, F.; Govan, J.; Gun’ko, Y. K. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015, 15, 2844–2851.

[29]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[30]

Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

[31]

Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C.; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022, 15, 6574–6581.

[32]

Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

[33]

Cho, N. H.; Kim, Y. B.; Lee, Y. Y.; Im, S. W.; Kim, R. M.; Kim, J. W.; Namgung, S. D.; Lee, H. E.; Kim, H.; Han, J. H. et al. Adenine oligomer directed synthesis of chiral gold nanoparticles. Nat. Commun. 2022, 13, 3831.

[34]

Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

[35]

González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

[36]

Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

[37]

Yang, G. L.; Kazes, M.; Oron, D. Chiral 2D colloidal semiconductor quantum wells. Adv. Funct. Mater. 2018, 28, 1802012.

[38]

Maoz, B. M.; Chaikin, Y.; Tesler, A. B.; Bar Elli, O.; Fan, Z. Y.; Govorov, A. O.; Markovich, G. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 2013, 13, 1203–1209.

[39]

di Gregorio, M. C.; Ben Moshe, A.; Tirosh, E.; Galantini, L.; Markovich, G. Chiroptical study of plasmon-molecule interaction: The case of interaction of glutathione with silver nanocubes. J. Phys. Chem. C 2015, 119, 17111–17116.

[40]

Levi-Belenkova, T.; Govorov, A. O.; Markovich, G. Orientation-sensitive peptide-induced plasmonic circular dichroism in silver nanocubes. J. Phys. Chem. C 2016, 120, 12751–12756.

[41]

Moloney, M. P.; Gun’ko, Y. K.; Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. 2007, 3900–3902.

[42]

Li, Y. W.; Cheng, J. J.; Li, J. G.; Zhu, X.; He, T. C.; Chen, R.; Tang, Z. K. Tunable chiroptical properties from the plasmonic band to metal-ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew. Chem., Int. Ed. 2018, 57, 10236–10240.

[43]

Jiang, W. F.; Qu, Z. B.; Kumar, P.; Vecchio, D.; Wang, Y. F.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M. et al. Emergence of complexity in hierarchically organized chiral particles. Science 2020, 368, 642–648.

[44]

Wang, P. P.; Yu, S. J.; Ouyang, M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J. Am. Chem. Soc. 2017, 139, 6070–6073.

[45]

Yan, J.; Feng, W. C.; Kim, J. Y.; Lu, J.; Kumar, P.; Mu, Z. Z.; Wu, X. C.; Mao, X. M.; Kotov, N. A. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 2020, 32, 476–488.

[46]

Padgett, M. J.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348.

[47]

Chrysostomou, A.; Lucas, P. W.; Hough, J. H. Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135-136. Nature 2007, 450, 71–73.

[48]

Hermans, T. M.; Bishop, K. J. M.; Stewart, P. S.; Davis, S. H.; Grzybowski, B. A. Vortex flows impart chirality-specific lift forces. Nat. Commun. 2015, 6, 5640.

[49]

Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

[50]

Jeong, K. J.; Lee, D. K.; Tran, V. T.; Wang, C. F.; Lv, J. W.; Park, J.; Tang, Z. Y.; Lee, J. Helical magnetic field-induced real-time plasmonic chirality modulation. ACS Nano 2020, 14, 7152–7160.

[51]
Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.
[52]

Pan, J. H.; Wang, X. Y.; Zhang, J. J.; Zhang, Q.; Wang, Q. B.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453.

[53]

Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.

[54]

Tian, Y.; Wang, T.; Liu, W. Y.; Xin, H. L.; Li, H. L.; Ke, Y. G.; Shih, W. M.; Gang, O. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 2015, 10, 637–644.

[55]

Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; García de Abajo, F. J.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133.

[56]

Yan, W. J.; Xu, L. G.; Xu, C. L.; Ma, W.; Kuang, H.; Wang, L. B.; Kotov, N. A. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 2012, 134, 15114–15121.

[57]

Merg, A. D.; Boatz, J. C.; Mandal, A.; Zhao, G. P.; Mokashi-Punekar, S.; Liu, C.; Wang, X. T.; Zhang, P. J.; van der Wel, P. C. A.; Rosi, N. L. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 2016, 138, 13655–13663.

[58]

Bagiński, M.; Tupikowska, M.; González-Rubio, G.; Wójcik, M.; Lewandowski, W. Shaping liquid crystals with gold nanoparticles: Helical assemblies with tunable and hierarchical structures via thin-film cooperative interactions. Adv. Mater. 2020, 32, 1904581.

[59]

Jung, S. H.; Jeon, J.; Kim, H.; Jaworski, J.; Jung, J. H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. J. Am. Chem. Soc. 2014, 136, 6446–6452.

[60]

Kim, J. Y.; Yeom, J.; Zhao, G. P.; Calcaterra, H.; Munn, J.; Zhang, P. J.; Kotov, N. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 2019, 141, 11739–11744.

[61]

Liu, Y.; Li, Y. D.; Jeong, S.; Wang, Y.; Chen, J.; Ye, X. C. Colloidal synthesis of nanohelices via bilayer lattice misfit. J. Am. Chem. Soc. 2020, 142, 12777–12783.

[62]

Han, C. P.; Li, H. B. Chiral recognition of amino acids based on cyclodextrin-capped quantum dots. Small 2008, 4, 1344–1350.

[63]

Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B. M.; Valcárcel, M. Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. Anal. Chem. 2009, 81, 4730–4733.

[64]

Hazen, R. M.; Filley, T. R.; Goodfriend, G. A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl. Acad. Sci. USA 2001, 98, 5487–5490.

[65]

Eralp, T.; Shavorskiy, A.; Zheleva, Z. V.; Dhanak, V. R.; Held, G. Hydrogen bond-induced pair formation of glycine on the chiral Cu{531} surface. Langmuir 2010, 26, 10918–10923.

[66]

Kang, Y. J.; Oh, J. W.; Kim, Y. R.; Kim, J. S.; Kim, H. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3, 4-dihydroxyphenylalanine. Chem. Commun. 2010, 46, 5665–5667.

[67]

Song, G. X.; Zhou, F. L.; Xu, C. L.; Li, B. X. A universal strategy for visual chiral recognition of α-amino acids with L-tartaric acid-capped gold nanoparticles as colorimetric probes. Analyst 2016, 141, 1257–1265.

[68]

Tang, K. J.; Gan, H.; Li, Y.; Chi, L. F.; Sun, T. L.; Fuchs, H. Stereoselective interaction between DNA and chiral surfaces. J. Am. Chem. Soc. 2008, 130, 11284–11285.

[69]

Gan, H.; Tang, K. J.; Sun, T. L.; Hirtz, M.; Li, Y.; Chi, L. F.; Butz, S.; Fuchs, H. Selective adsorption of DNA on chiral surfaces: Supercoiled or relaxed conformation. Angew. Chem., Int. Ed. 2009, 48, 5282–5286.

[70]

Sun, M. Z.; Xu, L. G.; Qu, A. H.; Zhao, P.; Hao, T. T.; Ma, W.; Hao, C. L.; Wen, X. D.; Colombari, F. M.; de Moura, A. F. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018, 10, 821–830.

[71]

Li, F.; Li, S.; Guo, X. C.; Dong, Y. H.; Yao, C.; Liu, Y. P.; Song, Y. G.; Tan, X. L.; Gao, L. Z.; Yang, D. Y. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem., Int. Ed. 2020, 59, 11087–11092.

[72]

Zhao, Y.; Xu, L. G.; Ma, W.; Wang, L. B.; Kuang, H.; Xu, C. L.; Kotov, N. A. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 2014, 14, 3908–3913.

[73]

Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem., Int. Ed. 2018, 57, 13495–13498.

[74]

Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787.

[75]

Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629–18636.

[76]

Tang, L. J.; Li, S.; Xu, L. G.; Ma, W.; Kuang, H.; Wang, L. B.; Xu, C. L. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl. Mater. Interfaces 2015, 7, 12708–12712.

[77]

Ma, W.; Sun, M. Z.; Fu, P.; Li, S.; Xu, L. G.; Kuang, H.; Xu, C. L. A chiral-nanoassemblies-enabled strategy for simultaneously profiling surface glycoprotein and MicroRNA in living cells. Adv. Mater. 2017, 29, 1703410.

[78]

Zhao, Y.; Yang, Y. X.; Zhao, J.; Weng, P.; Pang, Q. F.; Song, Q. J. Dynamic chiral nanoparticle assemblies and specific chiroplasmonic analysis of cancer cells. Adv. Mater. 2016, 28, 4877–4883.

[79]

Faridi, A.; Sun, Y. X.; Okazaki, Y.; Peng, G. T.; Gao, J.; Kakinen, A.; Faridi, P.; Zhao, M.; Javed, I.; Purcell, A. W. et al. Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons. Small 2018, 14, 1802825.

[80]

Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V. F.; Solís, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225–3230.

[81]

Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo. Angew. Chem., Int. Ed. 2020, 59, 7131–7138.

[82]

Gao, G. B.; Zhu, G. W.; Yu, L. C.; Zhang, Z. J.; Zhang, T.; Liu, X. L.; Zhang, C.; Zhou, L.; Sun, T. L. Chiral effect on Aβ fibrillation from molecular-scale to nanoscale. Nano Res. 2022, 15, 6721–6729.

[83]

Xie, J. W.; MacEwan, M. R.; Li, X. R.; Sakiyama-Elbert, S. E.; Xia, Y. N. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 2009, 3, 1151–1159.

[84]

Cho, W. K.; Kang, K.; Kang, G.; Jang, M. J.; Nam, Y.; Choi, I. S. Pitch-dependent acceleration of neurite outgrowth on nanostructured anodized aluminum oxide substrates. Angew. Chem. 2010, 122, 10312–10316.

[85]

Kim, T. H.; Yea, C. H.; Chueng, S. T. D.; Yin, P. T. T.; Conley, B.; Dardir, K.; Pak, Y.; Jung, G. Y.; Choi, J. W.; Lee, K. B. Large-scale nanoelectrode arrays to monitor the dopaminergic differentiation of human neural stem cells. Adv. Mater. 2015, 27, 6356–6362.

[86]

Solanki, A.; Chueng, S. T. D.; Yin, P. T.; Kappera, R.; Chhowalla, M.; Lee, K. B. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv. Mater. 2013, 25, 5477–5482.

[87]

Kang, K.; Yoon, S. Y.; Choi, S. E.; Kim, M. H.; Park, M.; Nam, Y.; Lee, J. S.; Choi, I. S. Cytoskeletal actin dynamics are involved in pitch-dependent neurite outgrowth on bead monolayers. Angew. Chem., Int. Ed. 2014, 53, 6075–6079.

[88]

Higuchi, A.; Ling, Q. D.; Chang, Y.; Hsu, S. T.; Umezawa, A. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 2013, 113, 3297–3328.

[89]

Li, W. J.; Tuli, R.; Huang, X. X.; Laquerriere, P.; Tuan, R. S. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005, 26, 5158–5166.

[90]

Xin, X. J.; Hussain, M.; Mao, J. J. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007, 28, 316–325.

[91]

Ha, S. W.; Weitzmann, M. N.; Beck, G. R. Jr. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and P62. ACS Nano 2014, 8, 5898–5910.

[92]

Zhao, X. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Wu, X. L.; Xu, C. L.; Kuang, H. Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 2017, 8, 2007.

[93]

Qu, A. H.; Sun, M. Z.; Kim, J. Y.; Xu, L. G.; Hao, C. L.; Ma, W.; Wu, X. L.; Liu, X. G.; Kuang, H.; Kotov, N. A. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 2021, 5, 103–113.

[94]

Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.

[95]

Li, S.; Sun, M. Z.; Hao, C. L.; Qu, A. H.; Wu, X. L.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral CuxCoyS nanoparticles under magnetic field and NIR light to eliminate senescent cells. Angew. Chem. 2020, 132, 14019–14026.

[96]

Xu, Z. J.; Qu, A. H.; Zhang, H. Y.; Wang, W. W.; Hao, C. L.; Lu, M. R.; Shi, B. M.; Xu, L. G.; Sun, M. Z.; Xu, C. L. et al. Photoinduced elimination of senescent microglia cells in vivo by chiral gold nanoparticles. Chem. Sci. 2022, 13, 6642–6654.

[97]

Shi, B. M.; Zhao, J.; Xu, Z. J.; Chen, C.; Xu, L. G.; Xu, C. L.; Sun, M. Z.; Kuang, H. Chiral nanoparticles force neural stem cell differentiation to alleviate Alzheimer’s disease. Adv. Sci. 2022, 9, 2202475.

[98]

Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5’-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

[99]

Peng, Z. H.; Yuan, L.; Xuhong, J. C.; Tian, H.; Zhang, Y.; Deng, J.; Qi, X. W. Chiral nanomaterials for tumor therapy: Autophagy, apoptosis, and photothermal ablation. J. Nanobiotechnol. 2021, 19, 220.

[100]

Das, G.; Shravage, B. V.; Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 2012, 4, a008813.

[101]

Giansanti, V.; Torriglia, A.; Scovassi, A. I. Conversation between apoptosis and autophagy: “Is it your turn or mine”. Apoptosis 2011, 16, 321–333.

[102]

Deng, S.; Shanmugam, M. K.; Kumar, A. P.; Yap, C. T.; Sethi, G.; Bishayee, A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019, 125, 1228–1246.

[103]

Lin, Y. C.; Lin, J. F.; Wen, S. I.; Yang, S. C.; Tsai, T. F.; Chen, H. E.; Chou, K. Y.; Hwang, T. I. S. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J. Med. Sci. 2017, 33, 215–223.

[104]

Hu, C.; Xu, X. H.; Zhang, X.; Li, Y. C.; Li, Y. K.; Gu, Z. W. Bioinspired design of stereospecific d-protein nanomimics for high-efficiency autophagy induction. Chem. Mater. 2017, 29, 7658–7662.

[105]

Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat. Commun. 2018, 9, 4494.

[106]

Yuan, L.; Zhang, F.; Qi, X. W.; Yang, Y. J.; Yan, C.; Jiang, J.; Deng, J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. J. Nanobiotechnol. 2018, 16, 55.

[107]

Wang, Y.; Xia, Y. S. Near-infrared optically active Cu2−xS nanocrystals: Sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. J. Mater. Chem. B 2020, 8, 7921–7930.

[108]

Li, Y. Y.; Zhou, Y. L.; Wang, H. Y.; Perrett, S.; Zhao, Y. L.; Tang, Z. Y.; Nie, G. J. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem., Int. Ed. 2011, 50, 5860–5864.

[109]

Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516.

[110]

Dunn, G. P.; Bruce, A. T.; Ikeda, H.; Old, L. J.; Schreiber, R. D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998.

[111]

Yeom, J.; Guimaraes, P. P. G.; Ahn, H. M.; Jung, B. K.; Hu, Q. Y.; McHugh, K.; Mitchell, M. J.; Yun, C. O.; Langer, R.; Jaklenec, A. Chiral supraparticles for controllable nanomedicine. Adv. Mater. 2020, 32, 1903878.

[112]

Li, G. M.; Wang, Z. W.; Fei, X. N.; Li, J. F.; Zheng, Y. J.; Li, B. J.; Zhang, T. Identification and elimination of cancer cells by folate-conjugated CdTe/CdS quantum dots chiral nano-sensors. Biochem. Biophys. Res. Commun. 2021, 560, 199–204.

[113]

Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C:Photochem. Rev. 2013, 15, 53–72.

[114]

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

[115]

Juarranz, Á.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 2008, 10, 148–154.

[116]

Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

[117]

Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Solé, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

[118]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[119]

Gao, F. L.; Sun, M. Z.; Ma, W.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 2017, 29, 1606864.

[120]

Wang, J. C.; Wu, X. L.; Ma, W.; Xu, C. L. Chiral AuCuAu heterogeneous nanorods with tailored optical activity. Adv. Funct. Mater. 2020, 30, 2000670.

[121]

Li, Y. W.; Miao, Z. W.; Shang, Z. W.; Cai, Y.; Cheng, J. J.; Xu, X. Q. A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3−x nanoparticles. Adv. Funct. Mater. 2020, 30, 1906311.

[122]

Miao, J.; Cai, Y.; Shao, Y. N.; Yang, G. L.; Huang, H. Y.; Shang, Z. W.; Cheng, J. J.; Li, Y. W.; Xu, X. Q. Multiple cell death pathways triggered by temperature-mediated synergistic effect derived from chiral phototheranostic ablation nanoagents. Appl. Mater. Today 2021, 23, 101001.

[123]

Chen, P. P.; Wang, G. Y.; Hao, C. L.; Ma, W.; Xu, L. G.; Kuang, H.; Xu, C. L.; Sun, M. Z. Peptide-directed synthesis of chiral nano-bipyramids for controllable antibacterial application. Chem. Sci. 2022, 13, 10281–10290.

[124]

Gao, R.; Xu, L. G.; Sun, M. Z.; Xu, M. L.; Hao, C. L.; Guo, X.; Colombari, F. M.; Zheng, X.; Král, P.; de Moura, A. F. et al. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat. Catal. 2022, 5, 694–707.

[125]

Li, S.; Xu, L. W.; Lu, M. R.; Sun, M. Z.; Xu, L. G.; Hao, C. L.; Wu, X. L.; Xu, C. L.; Kuang, H. Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Res. 2021, 14, 2451–2455.

[126]

Zhou, C.; Zhang, X. L.; Ai, J.; Ji, T.; Nagai, M.; Duan, Y. Y.; Che, S. A.; Han, L. Chiral hierarchical structure of bone minerals. Nano Res. 2022, 15, 1295–1302.

Nano Research
Pages 11107-11124
Cite this article:
Gao Q, Tan L, Wen Z, et al. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications. Nano Research, 2023, 16(8): 11107-11124. https://doi.org/10.1007/s12274-023-5831-7
Topics:

780

Views

15

Crossref

9

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 24 April 2023
Revised: 09 May 2023
Accepted: 11 May 2023
Published: 15 July 2023
© Tsinghua University Press 2023
Return