Chirality is an intriguing and fundamental property of natural matter, which is especially crucial in supporting the processes of living systems. The selective interactions between natural chiral compounds are widespread at all levels in living entities and play a vital role in biochemical reactions. The cutting-edge advancements in synthetic chiral inorganic nanostructures have led to significant progress in their applications within biological systems. These developments have unraveled chirality-dependent interactions at the nanoscale and molecular scale, providing a better understanding of intricate process of chiral selection in biological systems and demonstrating the potential of chiral inorganic nanostructures for life science applications. Herein, we summarize recent progress in understanding the chirality origin of inorganic chiral nanoparticles and the development of wet-chemical synthesis. We also discuss the captivating interaction between chiral inorganic nanostructures and biological entities at various scales. Finally, we discuss the challenges and potential of functional chiral nanomaterials for future biomedical and bioengineering applications, offering design ideas and a forecast for their future impact.
Publications
- Article type
- Year
- Co-author
Article type
Year
Review Article
Issue
Nano Research 2023, 16(8): 11107-11124
Published: 15 July 2023
Downloads:237
Total 1