AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emerging interactively stretchable electronics with optical and electrical dual-signal feedbacks based on structural color materials

Jialin Wang1,§Kai Zhao1,§( )Changqing Ye1( )Yanlin Song2( )
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

§ Jialin Wang and Kai Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

An in-depth overview about interactively stretchable electronics with optical and electrical dual-signal feedbacks based on structural color materials

Abstract

The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices. With mechanosensory functionality, these devices are highly desirable on account of their wide range of applications in electronic skin, personal healthcare, human–machine interfaces and beyond. However, they are mostly limited by single electrical signal feedback, restricting their diverse applications in visualized mechanical sensing. Inspired by the mechanochromism of structural color materials, interactively stretchable electronics with optical and electrical dual-signal feedbacks are recently emerged as novel sensory platforms, by combining both of their sensing mechanisms and characteristics. Herein, recent studies on interactively stretchable electronics based on structural color materials are reviewed. Following a brief introduction of their basic components (i.e., stretchable electronics and mechanochromic structural color materials), two types of interactively stretchable electronics with respect to the nanostructures of mechanochromic materials are outlined, focusing primarily on their design considerations and fabrication strategies. Finally, the main challenges and future perspectives of these emerging devices are discussed.

References

[1]

Gai, Y. S.; Li, H.; Li, Z. Self-healing functional electronic devices. Small 2021, 17, 2101383.

[2]

Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

[3]

Wang, H. M.; Li, S.; Lu, H. J.; Zhu, M. J.; Liang, H. R.; Wu, X. E.; Zhang, Y. Y. Carbon-based flexible devices for comprehensive health monitoring. Small Methods 2023, 7, 2201340.

[4]

Xu, K. C.; Lu, Y. Y.; Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 2019, 4, 1800628.

[5]

Koo, J. H.; Kang, J.; Lee, S.; Song, J. K.; Choi, J.; Yoon, J.; Park, H. J.; Sunwoo, S. H.; Kim, D. C.; Nam, W. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 2023, 6, 137–145.

[6]

Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

[7]

Qi, D. P.; Zhang, K. Y.; Tian, G. W.; Jiang, B.; Huang, Y. D. Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33, 2003155.

[8]

Peng, S. H.; Yu, Y. Y.; Wu, S. Y.; Wang, C. H. Conductive polymer nanocomposites for stretchable electronics: Material selection, design, and applications. ACS Appl. Mater. Interfaces 2021, 13, 43831–43854.

[9]

Shim, H. J.; Sunwoo, S. H.; Kim, Y.; Koo, J. H.; Kim, D. H. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv. Healthcare Mater. 2021, 10, 2002105.

[10]

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

[11]

Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

[12]

Gong, T. X.; Zhang, H.; Huang, W.; Mao, L. N.; Ke, Y. Z.; Gao, M.; Yu, B. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon 2018, 140, 286–295.

[13]

Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536.

[14]

Sun, Z. J.; Yang, S.; Zhao, P. F.; Zhang, J. M.; Yang, Y. H.; Ye, X. L.; Zhao, X. L.; Cui, N.; Tong, Y. H.; Liu, Y. C. et al. Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring. ACS Appl. Mater. Interfaces 2020, 12, 13287–13295.

[15]

Liu, Z. Y.; Wang, Y.; Ren, Y. Y.; Jin, G. Q.; Zhang, C. C.; Chen, W.; Yan, F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919–927.

[16]

Mousavi, S.; Howard, D.; Zhang, F. H.; Leng, J. S.; Wang, C. H. Direct 3D printing of highly anisotropic, flexible, constriction-resistive sensors for multidirectional proprioception in soft robots. ACS Appl. Mater. Interfaces 2020, 12, 15631–15643.

[17]

Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698.

[18]

Bi, P.; Zhang, M. C.; Li, S.; Lu, H. J.; Wang, H. M.; Liang, X. P.; Liang, H. R.; Zhang, Y. Y. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res. 2023, 16, 4093–4099.

[19]

Zhong, J. W.; Ma, Y.; Song, Y.; Zhong, Q. Z.; Chu, Y.; Karakurt, I.; Bogy, D. B.; Lin, L. W. A flexible piezoelectret actuator/sensor patch for mechanical human–machine interfaces. ACS Nano 2019, 13, 7107–7116.

[20]

Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human–machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

[21]

Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.

[22]

Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 2020, 30, 1904523.

[23]

Zhao, Y.; Gao, W. C.; Dai, K.; Wang, S.; Yuan, Z. Q.; Li, J. N.; Zhai, W.; Zheng, G. Q.; Pan, C. F.; Liu, C. T. et al. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv. Mater. 2021, 33, 2102332.

[24]

Yang, W. F.; Gong, W.; Gu, W.; Liu, Z. X.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered interactive fiber electronics with visual-digital synergies. Adv. Mater. 2021, 33, 2104681.

[25]

Guo, Y. J.; Li, H.; Li, Y.; Wei, X.; Gao, S.; Yue, W. J.; Zhang, C. W.; Yin, F. F.; Zhao, S. F.; Kim, N. Y. et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 2022, 32, 2203585.

[26]
Zhang, Y. Y.; Guo, M. Y.; Li, G. P.; Chen, X. L.; Liu, Z. S.; Shao, J. Y.; Huang, Y. A.; He, G. Ultrastable viologen ionic liquids-based ionogels for visible strain sensor integrated with electrochromism, electrofluorochromism, and strain sensing. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202202310.
[27]

Lin, G. Q.; Si, M. Q.; Wang, L. G.; Wei, S. X.; Lu, W.; Liu, H.; Zhang, Y.; Li, D. Y.; Chen, T. Dual-channel flexible strain sensors based on mechanofluorescent and conductive hydrogel laminates. Adv. Opt. Mater. 2022, 10, 2102306.

[28]

Kim, E. H.; Cho, S. H.; Lee, J. H.; Jeong, B.; Kim, R. H.; Yu, S.; Lee, T. W.; Shim, W.; Park, C. Organic light emitting board for dynamic interactive display. Nat. Commun. 2017, 8, 14964.

[29]

Kim, E. H.; Han, H.; Yu, S.; Park, C.; Kim, G.; Jeong, B.; Lee, S. W.; Kim, J. S.; Lee, S.; Kim, J. et al. Interactive skin display with epidermal stimuli electrode. Adv. Sci. 2019, 6, 1802351.

[30]

Lai, Y. C.; Ye, B. W.; Lu, C. F.; Chen, C. T.; Jao, M. H.; Su, W. F.; Hung, W. Y.; Lin, T. Y.; Chen, Y. F. Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: A tactile-induced insulating-to-conducting transition. Adv. Funct. Mater. 2016, 26, 1286–1295.

[31]

Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.

[32]

Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

[33]

Wang, X. D.; Que, M. L.; Chen, M. X.; Han, X.; Li, X. Y.; Pan, C. F.; Wang, Z. L. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv. Mater. 2017, 29, 1605817.

[34]

Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

[35]

Zhang, C. H.; Dong, H. Y.; Zhang, C.; Fan, Y. Q.; Yao, J. N.; Zhao, Y. S. Photonic skins based on flexible organic microlaser arrays. Sci. Adv. 2021, 7, eabh3530.

[36]

Guo, Q. Q.; Zhang, X. X. A review of mechanochromic polymers and composites: From material design strategy to advanced electronics application. Compos. Part B Eng. 2021, 227, 109434.

[37]

Teyssier, J.; Saenko, S. V.; Van Der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

[38]

Chung, K.; Yu, S.; Heo, C. J.; Shim, J. W.; Yang, S. M.; Han, M. G.; Lee, H. S.; Jin, Y. W.; Lee, S. Y.; Park, N. et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 2012, 24, 2375–2379.

[39]

Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828–832.

[40]

Yue, Y. F.; Kurokawa, T.; Haque, M. A.; Nakajima, T.; Nonoyama, T.; Li, X. F.; Kajiwara, I.; Gong, J. P. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 2014, 5, 4659.

[41]

Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

[42]

Hou, X. Y.; Li, F. Z.; Song, Y. L.; Li, M. Z. Recent progress in responsive structural color. J. Phys. Chem. Lett. 2022, 13, 2885–2900.

[43]

Rezaei, S. D.; Dong, Z. G.; Chan, J. Y. E.; Trisno, J.; Ng, R. J. H.; Ruan, Q. F.; Qiu, C. W.; Mortensen, N. A.; Yang, J. K. W. Nanophotonic structural colors. ACS Photonics 2021, 8, 18–33.

[44]

Xiong, R.; Luan, J. Y.; Kang, S.; Ye, C. H.; Singamaneni, S.; Tsukruk, V. V. Biopolymeric photonic structures: Design, fabrication, and emerging applications. Chem. Soc. Rev. 2020, 49, 983–1031.

[45]

Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.

[46]

Chen, K.; Fu, Q. Q.; Ye, S. Y.; Ge, J. P. Multicolor printing using electric-field-responsive and photocurable photonic crystals. Adv. Funct. Mater. 2017, 27, 1702825.

[47]

Lee, S. Y.; Lee, J. S.; Kim, S. H. Colorimetric recording of thermal conditions on polymeric inverse opals. Adv. Mater. 2019, 31, 1901398.

[48]

Liu, C.; Fan, Z. Y.; Tan, Y. Z.; Fan, F. Q.; Xu, H. P. Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis. Adv. Mater. 2020, 32, 1907569.

[49]

Wang, X. H.; Li, Y. C.; Zheng, J. Y.; Li, X. Y.; Liu, G. J.; Zhou, L.; Zhou, W. L.; Shao, J. Z. Polystyrene@poly(methyl methacrylate-butyl acrylate) core–shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors. ACS Appl. Nano Mater. 2022, 5, 729–736.

[50]

Zhong, K.; Li, J. Q.; Liu, L. W.; Van Cleuvenbergen, S.; Song, K.; Clays, K. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Adv. Mater. 2018, 30, 1707246.

[51]

Chen, G. J.; Hong, W. Mechanochromism of structural-colored materials. Adv. Opt. Mater. 2020, 8, 2000984.

[52]

Clough, J. M.; Weder, C.; Schrettl, S. Mechanochromism in structurally colored polymeric materials. Macromol. Rapid Commun. 2021, 42, 2000528.

[53]

Wang, Y. P.; Niu, W. B.; Lo, C. Y.; Zhao, Y. S.; He, X. M.; Zhang, G. R.; Wu, S. L.; Ju, B. Z.; Zhang, S. F. Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater. 2020, 30, 2000356.

[54]

Zhao, K.; Cao, X. F.; Alsaid, Y.; Cheng, J.; Wang, Y. P.; Zhao, Y. S.; He, X. M.; Zhang, S. F.; Niu, W. B. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chem. Eng. J. 2021, 426, 130870.

[55]

Wang, C. Y.; Zhang, M. C.; Xia, K. L.; Gong, X. Q.; Wang, H. M.; Yin, Z.; Guan, B. L.; Zhang, Y. Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 13331–13338.

[56]

Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.

[57]

Xu, D. Y.; Sun, L. Y.; Zhang, Z. H.; Wang, Y.; Zhang, X. H.; Ye, F. F.; Zhao, Y. J.; Pan, J. Y. Bio-inspired Janus structural color films as visually flexible electronics. Appl. Mater. Today 2021, 24, 101124.

[58]

Wang, L. Y.; Wang, Y.; Yang, S.; Tao, X. M.; Zi, Y. L.; Daoud, W. A. Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy 2022, 91, 106611.

[59]

Shen, Z. R.; Liu, F. M.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W. H.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298.

[60]

Duan, L. Y.; D'hooge, D. R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617.

[61]

Souri, H.; Banerjee, H.; Jusufi, A.; Radacsi, N.; Stokes, A. A.; Park, I.; Sitti, M.; Amjadi, M. Wearable and stretchable strain sensors: Materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2020, 2, 2000039.

[62]

Wang, J. L.; Lu, C. H.; Zhang, K. Textile-based strain sensor for human motion detection. Energy Environ. Mater. 2020, 3, 80–100.

[63]

Lou, Z.; Wang, L. L.; Shen, G. Z. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018, 3, 1800444.

[64]

Qiu, A. D.; Li, P. L.; Yang, Z. K.; Yao, Y.; Lee, I.; Ma, J. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 2019, 29, 1806306.

[65]

Hu, Y.; Qi, K.; Chang, L. F.; Liu, J. Q.; Yang, L. L.; Huang, M. J.; Wu, G.; Lu, P.; Chen, W.; Wu, Y. C. A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. J. Mater. Chem. C 2019, 7, 6879–6888.

[66]

Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X. G.; Razal, J. M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249.

[67]

Raman, S.; Sankar, A. R. Intrinsically conducting polymers in flexible and stretchable resistive strain sensors: A review. J. Mater. Sci. 2022, 57, 13152–13178.

[68]

Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.

[69]

Deng, C. H.; Lan, L. F.; He, P. H.; Ding, C. C.; Chen, B. Z.; Zheng, W.; Zhao, X.; Chen, W. S.; Zhong, X. Z.; Li, M. et al. High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 2020, 8, 5541–5546.

[70]

Hu, X. G.; Yang, F. R.; Wu, M. X.; Sui, Y.; Guo, D.; Li, M.; Kang, Z.; Sun, J. N.; Liu, J. S. A super-stretchable and highly sensitive carbon nanotube capacitive strain sensor for wearable applications and soft robotics. Adv. Mater. Technol. 2022, 7, 2100769.

[71]

Mo, F. N.; Huang, Y.; Li, Q.; Wang, Z. F.; Jiang, R. J.; Gai, W. M.; Zhi, C. Y. A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 2021, 31, 2010830.

[72]

Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl. Mater. Interfaces 2018, 10, 32640–32648.

[73]

Yan, Z. C.; Pan, T. S.; Wang, D. K.; Li, J. C.; Jin, L.; Huang, L.; Jiang, J. H.; Qi, Z. H.; Zhang, H. L.; Gao, M. et al. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. ACS Appl. Mater. Interfaces 2019, 11, 12261–12271.

[74]

Ning, C.; Cheng, R. W.; Jiang, Y.; Sheng, F. F.; Yi, J.; Shen, S.; Zhang, Y. H.; Peng, X.; Dong, K.; Wang, Z. L. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 2022, 16, 2811–2821.

[75]

Kim, Y. G.; Song, J. H.; Hong, S.; Ahn, S. H. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flex. Electron. 2022, 6, 52.

[76]

Huo, Z. H.; Wang, X. D.; Zhang, Y. F.; Wan, B. S.; Wu, W. Q.; Xi, J. G.; Yang, Z.; Hu, G. F.; Li, X. Y.; Pan, C. F. High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy 2020, 73, 104744.

[77]

Kozioł, M.; Toroń, B.; Szperlich, P.; Jesionek, M. Fabrication of a piezoelectric strain sensor based on SbSI nanowires as a structural element of a FRP laminate. Compos. Part B Eng. 2019, 157, 58–65.

[78]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[79]

Le, X. H.; Shi, Q. F.; Sun, Z. D.; Xie, J.; Lee, C. Noncontact human–machine interface using complementary information fusion based on MEMS and triboelectric sensors. Adv. Sci. (Weinh. ) 2022, 9, 2201056.

[80]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[81]

Fenzl, C.; Hirsch, T.; Wolfbeis, O. S. Photonic crystals for chemical sensing and biosensing. Angew. Chem., Int. Ed. 2014, 53, 3318–3335.

[82]

Kou, D. H.; Ma, W.; Zhang, S. F.; Tang, B. T. Copolymer-based photonic crystal sensor for discriminative detection of liquid benzene, toluene, ethylbenzene, and xylene. ACS Appl. Polym. Mater. 2020, 2, 2–11.

[83]

Kou, D. H.; Zhang, Y. C.; Zhang, S. F.; Wu, S. L.; Ma, W. High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem. Eng. J. 2019, 375, 121987.

[84]

Kou, D. H.; Ma, W.; Zhang, S. F.; Li, R.; Zhang, Y. BTEX vapor detection with a flexible MOF and functional polymer by means of a composite photonic crystal. ACS Appl. Mater. Interfaces 2020, 12, 11955–11964.

[85]

Liu, S. M.; Yang, Y.; Zhang, L. B.; Xu, J. P.; Zhu, J. T. Recent progress in responsive photonic crystals of block copolymers. J. Mater. Chem. C 2020, 8, 16633–16647.

[86]

Yue, Y. F.; Haque, M. A.; Kurokawa, T.; Nakajima, T.; Gong, J. P. Lamellar hydrogels with high toughness and ternary tunable photonic stop-band. Adv. Mater. 2013, 25, 3106–3110.

[87]

Zhang, Y. G.; Qi, Y.; Wang, R. Z.; Cao, T.; Ma, W.; Zhang, S. F. Nonintrusively adjusting structural colors of sealed two-dimensional photonic crystals: Immediate transformation between transparency and intense iridescence and their applications. ACS Appl. Mater. Interfaces 2021, 13, 13861–13871.

[88]

Minh, N. H.; Kim, K.; Kang, D. H.; Yoo, Y. E.; Yoon, J. S. An angle-compensating colorimetric strain sensor with wide working range and its fabrication method. Sci. Rep. 2022, 12, 21926.

[89]

Wu, S. L.; Xia, H. B.; Xu, J. H.; Sun, X. Q.; Liu, X. G. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362.

[90]

Li, C.; Zhao, M. X.; Zhou, X.; Li, H. Z.; Wang, Y.; Hu, X. T.; Li, M. Z.; Shi, L.; Song, Y. L. Janus structural color from a 2D photonic crystal hybrid with a Fabry–Perot cavity. Adv. Opt. Mater. 2018, 6, 1800651.

[91]

Aguirre, C. I.; Reguera, E.; Stein, A. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578.

[92]

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Chi, J. J.; Wang, Y. T.; Zhao, Y. J. Bioinspired bilayer structural color hydrogel actuator with multi-environment responsiveness and survivability. Small Methods 2019, 3, 1900519.

[93]

Ito, T.; Katsura, C.; Sugimoto, H.; Nakanishi, E.; Inomata, K. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly. Langmuir 2013, 29, 13951–13957.

[94]

Liao, J. L.; Zhu, C.; Gao, B. B.; Zhao, Z.; Liu, X. J.; Tian, L.; Zeng, Y.; Zhou, X. L.; Xie, Z. Y.; Gu, Z. Z. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv. Funct. Mater. 2019, 29, 1902954.

[95]

Li, M. M.; Lyu, Q.; Peng, B. L.; Chen, X. D.; Zhang, L. B.; Zhu, J. T. Bioinspired colloidal photonic composites: Fabrications and emerging applications. Adv. Mater. 2022, 34, 2110488.

[96]

Zhang, L. B.; Li, M. M.; Lyu, Q. Q.; Zhu, J. T. Bioinspired structural color nanocomposites with healable capability. Polym. Chem. 2020, 11, 6413–6422.

[97]

Bisoyi, H. K.; Li, Q. Liquid crystals: Versatile self-organized smart soft materials. Chem. Rev. 2022, 122, 4887–4926.

[98]

McConney, M. E.; Rumi, M.; Godman, N. P.; Tohgha, U. N.; Bunning, T. J. Photoresponsive structural color in liquid crystalline materials. Adv. Opt. Mater. 2019, 7, 1900429.

[99]

Duan, C. L.; Cheng, Z.; Wang, B.; Zeng, J. S.; Xu, J.; Li, J. P.; Gao, W. H.; Chen, K. F. Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 2021, 17, 2007306.

[100]

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Zhao, Y. J.; Shang, L. R. Cholesteric cellulose liquid crystals with multifunctional structural colors. Adv. Funct. Mater. 2022, 32, 2107242.

[101]

Wang, C. X.; Tang, C. M.; Wang, Y. F.; Shen, Y. H.; Qi, W.; Zhang, T.; Su, R. X.; He, Z. M. Chiral photonic materials self-assembled by cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101017.

[102]

Xu, C. L.; Huang, C. X.; Huang, H. H. Recent advances in structural color display of cellulose nanocrystal materials. Appl. Mater. Today 2021, 22, 100912.

[103]

Yi, H.; Lee, S. H.; Ko, H.; Lee, D.; Bae, W. G.; Kim, T. I.; Hwang, D. S.; Jeong, H. E. Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 2019, 29, 1902720.

[104]

Zheng, L.; Xu, X. J.; Sun, D. P.; Du, K. Y.; Zhou, X.; Geng, Y. Z.; Chen, L.; Zhu, J. L.; Chen, D.; Han, W. M. Scalable photonic liquid crystal nanoscale-thick films for deformation and discoloration. ACS Appl. Nano Mater. 2022, 5, 12943–12950.

[105]

Yang, Y. Z.; Zhang, X.; Chen, Y. H.; Yang, X.; Ma, J. Z.; Wang, J. X.; Wang, L.; Feng, W. Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks. ACS Appl. Mater. Interfaces 2021, 13, 41102–41111.

[106]

Zhang, X.; Yang, Y. Z.; Xue, P.; Valenzuela, C.; Chen, Y. H.; Yang, X.; Wang, L.; Feng, W. Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem., Int. Ed. 2022, 61, e202211030.

[107]

Rahman, M. D. A.; Said, S. M.; Balamurugan, S. Blue phase liquid crystal: Strategies for phase stabilization and device development. Sci. Technol. Adv. Mater. 2015, 16, 033501.

[108]

Takeoka, Y. Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 2012, 22, 23299–23309.

[109]

Meng, F. T.; Wang, Z. Z.; Zhang, S. F.; Ju, B. Z.; Tang, B. T. Bioinspired quasi-amorphous structural color materials toward architectural designs. Cell Rep. Phys. Sci. 2021, 2, 100499.

[110]

Zhou, C. T.; Qi, Y.; Zhang, S. F.; Niu, W. B.; Ma, W.; Wu, S. L.; Tang, B. T. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing. Dyes Pigments 2020, 176, 108226.

[111]

Meng, F. T.; Umair, M. M.; Iqbal, K.; Jin, X.; Zhang, S. F.; Tang, B. T. Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Appl. Mater. Interfaces 2019, 11, 13022–13028.

[112]

Tan, H. Y.; Lyu, Q. Q.; Xie, Z. J.; Li, M. M.; Wang, K.; Wang, K.; Xiong, B. J.; Zhang, L. B.; Zhu, J. T. Metallosupramolecular photonic elastomers with self-healing capability and angle-independent color. Adv. Mater. 2019, 31, 1805496.

[113]

Li, M. M.; Tan, H. Y.; Jia, L. Z.; Zhong, R.; Peng, B. L.; Zhou, J. C.; Xu, J. P.; Xiong, B. J.; Zhang, L. B.; Zhu, J. T. Supramolecular photonic elastomers with brilliant structural colors and broad-spectrum responsiveness. Adv. Funct. Mater. 2020, 30, 2000008.

[114]

Haque, M. A.; Kurokawa, T.; Gong, J. P. Anisotropic hydrogel based on bilayers: Color, strength, toughness, and fatigue resistance. Soft Matt. 2012, 8, 8008–8016.

[115]

Haque, M. A.; Kurokawa, T.; Kamita, G.; Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 2011, 44, 8916–8924.

[116]

Li, X. F.; Kurokawa, T.; Takahashi, R.; Haque, M. A.; Yue, Y. F.; Nakajima, T.; Gong, J. P. Polymer adsorbed bilayer membranes form self-healing hydrogels with tunable superstructure. Macromolecules 2015, 48, 2277–2282.

[117]

Zhang, H. M.; Wang, Y. P.; Zhang, S. F.; Niu, W. B. Heterogeneous structural color conductive photonic organohydrogel fibers with alternating single and dual networks. ACS Appl. Mater. Interfaces 2022, 14, 54936–54945.

[118]

Wang, Y. P.; Cao, X. F.; Cheng, J.; Yao, B. W.; Zhao, Y. S.; Wu, S. L.; Ju, B. Z.; Zhang, S. F.; He, X. M.; Niu, W. B. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 2021, 15, 3509–3521.

[119]

Gong, Y. T.; Zhang, Y. Z.; Fang, S. Q.; Liu, C.; Niu, J.; Li, G. J.; Li, F.; Li, X. C.; Cheng, T.; Lai, W. Y. Artificial intelligent optoelectronic skin with anisotropic electrical and optical responses for multi-dimensional sensing. Appl. Phys. Rev. 2022, 9, 021403.

[120]

Wang, Y. P.; Zhang, H. M.; Zhang, S. F.; Niu, W. B. Squid-inspired photonic-ionic skin with anti-freezing, drying-tolerance, and antibacterial abilities for wirelessly interactive multi-sensing. Chem. Eng. J. 2023, 462, 142290.

[121]

Park, T. H.; Yu, S.; Cho, S. H.; Kang, H. S.; Kim, Y.; Kim, M. J.; Eoh, H.; Park, C.; Jeong, B.; Lee, S. W. et al. Block copolymer structural color strain sensor. NPG Asia Mater. 2018, 10, 328–339.

[122]

Li, Q.; Liu, S. T.; Wang, J. L.; Mbola, N. M.; Meng, Z. H.; Wang, X. Y.; Xue, M. A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. J. Mater. Chem. C 2022, 10, 9025–9034.

[123]

Zhang, H.; Chen, H. M.; Lee, J. H.; Kim, E.; Chan, K. Y.; Venkatesan, H.; Shen, X.; Yang, J. L.; Kim, J. K. Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 2023, 17, 5921–5934.

[124]

Sun, Y. D.; Wang, Y. P.; Liu, Y.; Wu, S. L.; Zhang, S. F.; Niu, W. B. Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv. Funct. Mater. 2022, 32, 2204467.

[125]

Bryant, S. J.; Da Silva, M. A.; Hossain, K. M. Z.; Calabrese, V.; Scott, J. L.; Edler, K. J. Non-volatile conductive gels made from deep eutectic solvents and oxidised cellulose nanofibrils. Nanoscale Adv. 2021, 3, 2252–2260.

[126]

Mota-Morales, J. D.; Morales-Narváez, E. Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter 2021, 4, 2141–2162.

[127]

Liu, Y.; Zhang, X.; Li, B. R.; Chen, H. J.; Li, H. F.; Chen, J. L.; Dong, H. Super stable, highly ion-conductive and transparent eutecto-/hydro-gel promotes wearable electronic and visual strain sensing. Chem. Eng. J. 2023, 461, 141965.

[128]

Zhao, R. L.; He, Y.; He, Y.; Li, Z. C.; Chen, M.; Zhou, N.; Tao, G. M.; Hou, C. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection. ACS Appl. Mater. Interfaces 2023, 15, 16063–16071.

[129]

Lyu, Q. Q.; Wang, S. Z.; Peng, B. L.; Chen, X. D.; Du, S.; Li, M. M.; Zhang, L. B.; Zhu, J. T. Bioinspired photonic ionogels as interactively visual ionic skin with optical and electrical synergy. Small 2021, 17, 2103271.

[130]

Zhao, K.; Wang, Y. P.; Guo, J. Y.; Zhang, S. F.; Niu, W. B. Photonic vitrimer-based electronics with self-healing and ultrastable visual-digital outputs for wireless strain sensing. Chem. Eng. J. 2022, 450, 138285.

[131]

Peng, L.; Hou, L.; Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Adv. Mater. 2023, 35, 2211342.

[132]

Zhang, H.; Guo, J. H.; Wang, Y.; Sun, L. Y.; Zhao, Y. J. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. (Weinh.) 2021, 8, 2102156.

[133]

Liu, H. Y.; Wang, Y.; Shi, Z. K.; Tan, D.; Yang, X. C.; Xiong, L. H.; Li, G.; Lei, Y. F.; Xue, L. J. Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 2022, 6, 2200461.

[134]

Shao, W. W.; Zhang, L. H.; Jiang, Z. J.; Xu, M. T.; Chen, Y. F.; Li, S. L.; Liu, C. H. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Nanoscale Horiz. 2022, 7, 1411–1417.

[135]

Wang, Y.; Sun, L. Y.; Chen, G. P.; Chen, H. X.; Zhao, Y. J. Structural color ionic hydrogel patches for wound management. ACS Nano 2023, 17, 1437–1447.

[136]

Bai, L.; Jin, Y.; Shang, X.; Shi, L. J.; Jin, H. Y.; Zhou, R.; Lai, S. Q. Bio-inspired visual multi-sensing interactive ionic skin with asymmetrical adhesive, antibacterial and self-powered functions. Chem. Eng. J. 2022, 438, 135596.

[137]

Wang, Y.; Yu, Y. R.; Guo, J. H.; Zhang, Z. H.; Zhang, X. X.; Zhao, Y. J. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater. 2020, 30, 2000151.

[138]

Shao, C. M.; Yu, Y. R.; Fan, Q. H.; Wang, X. C.; Ye, F. F. Polyurethane-polypyrrole hybrid structural color films for dual-signal mechanics sensing. Smart Med. 2022, 1, e20220008.

[139]

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Zhao, Y. J. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 2020, 117, 18310–18316.

[140]

Bai, L.; Jin, Y.; Shang, X.; Jin, H. Y.; Zhou, Y. T.; Shi, L. J. Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. J. Mater. Chem. A 2021, 9, 23916–23928.

Nano Research
Pages 1837-1855
Cite this article:
Wang J, Zhao K, Ye C, et al. Emerging interactively stretchable electronics with optical and electrical dual-signal feedbacks based on structural color materials. Nano Research, 2024, 17(3): 1837-1855. https://doi.org/10.1007/s12274-023-5920-7
Topics:

772

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 31 March 2023
Revised: 12 June 2023
Accepted: 12 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return