The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices. With mechanosensory functionality, these devices are highly desirable on account of their wide range of applications in electronic skin, personal healthcare, human–machine interfaces and beyond. However, they are mostly limited by single electrical signal feedback, restricting their diverse applications in visualized mechanical sensing. Inspired by the mechanochromism of structural color materials, interactively stretchable electronics with optical and electrical dual-signal feedbacks are recently emerged as novel sensory platforms, by combining both of their sensing mechanisms and characteristics. Herein, recent studies on interactively stretchable electronics based on structural color materials are reviewed. Following a brief introduction of their basic components (i.e., stretchable electronics and mechanochromic structural color materials), two types of interactively stretchable electronics with respect to the nanostructures of mechanochromic materials are outlined, focusing primarily on their design considerations and fabrication strategies. Finally, the main challenges and future perspectives of these emerging devices are discussed.
Publications
- Article type
- Year
- Co-author
Article type
Year
Review Article
Issue
Nano Research 2024, 17(3): 1837-1855
Published: 26 July 2023
Downloads:91
Total 1