Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic nitrate reduction reaction (NO3RR) offers a unique rationale for green NH3 synthesis, yet the lack of high-efficiency NO3RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO2 nanosheets can efficiently catalyze the conversion of NO3RR-to-NH3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 μg·h−1·mgcat.−1, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO2. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm−2 and a yield rate of 452 μg·h−1·mgcat.−1. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO3− species, and reduce the NO3RR-to-NH3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH3 electrosynthesis and nitrate removal.
van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.
Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.
Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.
Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 950–957.
Deng, Z.; Ma, C.; Fan, X.; Li, Z.; Luo, Y.; Sun, S.; Zheng, D.; Liu, Q.; Du, J.; Lu, Q. et al. Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 2022, 28, 100854.
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.
Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.
Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.
Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.
Zeng, L. B.; Qiao, Z.; Peng, X. Y.; Liu, Z. B.; Li, Z. J.; Yang, B.; Lei, L. C.; Wu, G.; Hou, Y. Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chem. Commun. 2022, 58, 2096–2111.
Kong, Y.; Wu, L.; Yang, X. X.; Li, Y.; Zheng, S. X.; Yang, B.; Li, Z. J.; Zhang, Q. H.; Zhou, S. D.; Lei, L. C. et al. Accelerating protonation kinetics for ammonia electrosynthesis on single iron sites embedded in carbon with intrinsic defects. Adv. Funct. Mater. 2022, 32, 2205409.
Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.
Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.
Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.
Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B:Environ. 2022, 316, 121651.
Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.
Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: Theory versus experiment. Angew. Chem., Int. Ed. 2008, 47, 5512–5522.
Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.
Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.
Chen, J.; Zhou, Q.; Yue, L. C.; Zhao, D. L.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Hamdy, M. S. et al. Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia. Chem. Commun. 2022, 58, 3787–3790.
Wu, X.; Ma, A. J.; Hu, J.; Liu, D.; Kuvarega, A. T.; Mamba, B. B.; Gui, J. Z. Amorphous nickel-iron hydroxide nanosheets for effective electroreduction of nitrate to ammonia. Inorg. Chem. Front. 2023, 10, 666–674.
Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.
Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.
Li, X.; Zhao, X.; Zhou, Y. T.; Hu, J.; Zhang, H. C.; Hu, X.; Hu, G. Z. Pd nanocrystals embedded in BC2N for efficient electrochemical conversion of nitrate to ammonia. Appl. Surf. Sci. 2022, 584, 152556.
Duca, M.; Sacré, N.; Wang, A.; Garbarino, S.; Guay, D. Enhanced electrocatalytic nitrate reduction by preferentially-oriented(100) PtRh and PtIr alloys: The hidden treasures of the “miscibility gap”. Appl. Catal. B:Environ. 2018, 221, 86–96.
Gou, F. L.; Wang, H.; Fu, M. M.; Jiang, Y. M.; Shen, W.; He, R. X.; Li, M. Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media. Appl. Surf. Sci. 2023, 612, 155872.
Saha, P.; Amanullah, S.; Dey, A. Electrocatalytic reduction of nitrogen to hydrazine using a trinuclear nickel complex. J. Am. Chem. Soc. 2020, 142, 17312–17317.
Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.
Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.
Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.
Li, L. L.; ul Hasan, I. M.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Rehman, F.; Kwon, S.; Musgrave III, C. B.; Tamtaji, M.; Goddard III, W. A.; Luo, Z. T. High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 103, 107866.
Wang, Y.; Shao, M. H. Theoretical screening of transition metal-N4-doped graphene for electroreduction of nitrate. ACS Catal. 2022, 12, 5407–5415.
Yang, P.; Guo, H.; Wu, H. R.; Zhang, F. Y.; Liu, J. X.; Li, M. Y.; Yang, Y. T.; Cao, Y. H.; Yang, G. D.; Zhou, Y. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J. Colloid Interface Sci. 2023, 636, 184–193.
Zhao, S.; Liu, H. X.; Qiu, Y.; Liu, S. Q.; Diao, J. X.; Chang, C. R.; Si, R.; Guo, X. H. An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction. J. Mater. Chem. A 2020, 8, 6586–6596.
El-Deab, M. S. Electrochemical reduction of nitrate to ammonia at modified gold electrodes. Electrochim. Acta 2004, 49, 1639–1645.
Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 Nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105–9114.
Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.
Roguska, A.; Kudelski, A.; Pisarek, M.; Opara, M.; Janik-Czachor, M. Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate. Appl. Surf. Sci. 2011, 257, 8182–8189.
Zhao, D. L.; Ma, C. Q.; Li, J.; Li, R. Z.; Fan, X. Y.; Zhang, L. C.; Dong, K.; Luo, Y. S.; Zheng, D. D.; Sun, S. J. et al. Direct eight-electron NO3−-to-NH3 conversion: Using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst. Inorg. Chem. Front. 2022, 9, 6412–6417.
Li, Y.; Yang, Y. L.; Chen, G.; Fan, J. J.; Xiang, Q. J. Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met. 2022, 41, 3045–3059.
Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657.
Wei, T. R.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Oxygen vacancy-rich amorphous copper oxide enables highly selective electroreduction of carbon dioxide to ethylene. Acta Phys. -Chim. Sin. 2023, 39, 2207026.
Dong, S. Y.; Niu, A. H.; Wang, K. H.; Hu, P. J.; Guo, H. R.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Sun, X. P.; Li, T. S. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Appl. Catal. B:Environ. 2023, 333, 122772.
Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.
Nguyen, V. M.; Nguyen, T. D. CdS/Au/TiO2 nanowire composite as selective, sensitive and reliable immunosensors for detecting octachlorostyrene under visible light. Sensors Actuat. A:Phys. 2022, 347, 113908.
Wei, T. R.; Liu, W. X.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445.
Wei, T. R.; Bao, H. H.; Wang, X. Z.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Ionic liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem 2023, 15, e202201411.
Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.
Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B:Environ. 2022, 307, 121145.
Jin, M. M.; Liu, S.; Meng, G.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Low-coordinated Mo clusters for high-efficiency electrocatalytic hydrogen peroxide production. Adv. Mater. Interf. 2023, 10, 2201144.
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.
Zhang, S.; Gao, X. T.; Hou, P. F.; Zhang, T. R.; Kang, P. Nitrogen-doped Zn-Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Met. 2021, 40, 3117–3124.
Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. 2023, 16, 2325–2346.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.
Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Structures 2022, 3, 2200086.
Zhang, H.; Wei, T. R.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Recent progress in metal phosphorous chalcogenides: Potential high-performance electrocatalysts. Small 2023, 19, 2207249.
Chen, S. S.; Lian, K.; Liu, W. X.; Liu, Q.; Qi, G. C.; Luo, J.; Liu, X. J. Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res., 2023, 16, 9214–9230.
Shen, P.; Wang, G. H.; Chen, K.; Kang, J. L.; Ma, D. W.; Chu, K. Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 563–570.
Ding, J. Y.; Hou, X. H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 2023, 151, 110621.
Zhang, S. C.; Liu, Q.; Tang, X. Y.; Zhou, Z. M.; Fan, T. Y.; You, Y. M.; Zhang, Q. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front. Chem. Sci. Eng. 2023, 17, 726–734.
Mi, L. R.; Huo, Q. H.; Cao, J. Y.; Chen, X. B.; Yang, H. P.; Hu, Q.; He, C. X. Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a “two-in-one” flow cell electrolyzer. Adv. Energy Mater. 2022, 12, 2202247.
Feng, T.; Li, F. T.; Hu, X. J.; Wang, Y. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chin. Chem. Lett. 2023, 34, 107862.
Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.
Zou, X. Y.; Xie, J. W.; Wang, C. H.; Jiang, G. M.; Tang, K.; Chen, C. J. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. Chin. Chem. Lett. 2023, 34, 107908.