Electrocatalytic nitrate reduction reaction (NO3RR) offers a unique rationale for green NH3 synthesis, yet the lack of high-efficiency NO3RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO2 nanosheets can efficiently catalyze the conversion of NO3RR-to-NH3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 μg·h−1·mgcat.−1, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO2. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm−2 and a yield rate of 452 μg·h−1·mgcat.−1. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO3− species, and reduce the NO3RR-to-NH3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH3 electrosynthesis and nitrate removal.
Publications
Article type
Year
Research Article
Issue
Nano Research 2024, 17(3): 1209-1216
Published: 14 August 2023
Downloads:57