AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Adjusting oxygen vacancy of VO2·xH2O nanoarray architectures for efficient NH4+ storage

Jia’ni Gong1Pengfei Bai2Jingjing Sun1Yanyan Liu1Xueying Dong1Tao Hu1( )Changgong Meng1,3Yifu Zhang1( )
School of Chemistry, Dalian University of Technology, Dalian 116024, China
School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
Show Author Information

Graphical Abstract

We prepare VO2·xH2O anode material with nano-array structure for aqueous ammonium ion batteries. The anode material shows excellent rate performance under both ordinary load (220 mAh·g−1 at 0.1 A·g−1) and heavy load (120 mAh·g−1 at 0.2 A·g−1). The ordinary load corresponds to 2 mg·cm−1, while the heavy load is 11 mg·cm−1. Additionally, the application of quasi-solid flexible ammonium ion battery shows good foldability.

Abstract

Aqueous rechargeable batteries are the promising energy storge technology due to their safety, low cost, and environmental friendliness. Ammonium ion (NH4+) is an ideal charge carrier for such batteries because of its small hydration radius and low molar mass. In this study, VO2·xH2O with rich oxygen defects (d-HVO) is designed and synthesized, and it exhibits unique nanoarray structure and good electrochemical performances for NH4+ storge. Experimental and calculation results indicate that oxygen defects in d-HVO can enhance the conductivity and diffusion rate of NH4+, leading to improved electrochemical performances. The most significant improvement is observed in d-HVO with 2 mmol thiourea (d-HVO-2) (220 mAh·g−1 at 0.1 A·g−1), which has a moderate defect content. A full cell is assembled using d-HVO-2 as the anode and polyaniline (PANI) as the cathode, which shows excellent cycling stability with a capacity retention rate of 80% after 1000 cycles and outstanding power density up to 4540 W·kg−1. Moreover, the flexible d-HVO-2||PANI battery, based on quasi-solid electrolyte, shows excellent flexibility under different bending conditions. This study provides a new approach for designing and developing high-performance NH4+ storage electrode materials.

Electronic Supplementary Material

Download File(s)
12274_2023_6059_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Cao, J.; Zhang, D. D.; Zhang, X. Y.; Sawangphruk, M.; Qin, J. Q.; Liu, R. P. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 2020, 8, 9331–9344.

[2]

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

[3]

Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.

[4]

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

[5]

Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.

[6]

Jiang, H. M.; Zhang, Y. F.; Waqar, M.; Yang, J.; Liu, Y. Y.; Sun, J. J.; Feng, Z. Y.; Sun, J. G.; Pan, Z. H.; Meng, C. G. et al. Anomalous Zn2+ storage behavior in dual-ion-in-sequence reconstructed vanadium oxides. Adv. Funct. Mater. 2023, 33, 2213127.

[7]

Wu, X. Y.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T. C.; Bi, X. X.; Yuan, Y. F.; Qi, Y. T.; Surta, T. W.; Huang, W. X. et al. Diffusion-free grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 2019, 4, 123–130.

[8]

Jiang, H.; Hong, J. J.; Wu, X. Y.; Surta, T. W.; Qi, Y. T.; Dong, S. Y.; Li, Z. F.; Leonard, D. P.; Holoubek, J. J.; Wong, J. C. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 2018, 140, 11556–11559.

[9]

Li, J.; Yan, H. H.; Xu, C. W.; Liu, Y. W.; Zhang, X. K.; Xia, M. T.; Zhang, L. Y.; Shu, J. Insights into host materials for aqueous proton batteries: Structure, mechanism and prospect. Nano Energy 2021, 89, 106400.

[10]

Wu, Y. L.; Dong, S. Y.; Lv, N.; Xu, Z. K.; Ren, R. Q.; Zhu, G. Y.; Huang, B. L.; Zhang, Y. Z.; Dong, X. C. Unlocking the high capacity ammonium-ion storage in defective vanadium dioxide. Small 2022, 18, 2204888.

[11]

Chao, D. L.; Fan, H. J. Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 2019, 5, 1359–1361.

[12]

Zheng, R. T.; Li, Y. H.; Yu, H. X.; Zhang, X. K.; Yang, D.; Yan, L.; Li, Y.; Shu, J.; Su, B. L. Ammonium ion batteries: Material, electrochemistry and strategy. Angew. Chem., Int. Ed. 2023, 62, e202301629.

[13]

Xia, M. T.; Zhang, X. K.; Yu, H. X.; Yang, Z. W.; Chen, S.; Zhang, L. Y.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759.

[14]

Wu, Y. L.; Xu, Z. K.; Ren, R. Q.; Lv, N.; Yang, J. Y.; Zhang, J. Y.; Ren, H.; Dong, S. Y.; Dong, X. C. Flexible ammonium-ion pouch cells based on a tunneled manganese dioxide cathode. ACS Appl. Mater. Interfaces 2023, 15, 12434–12442.

[15]

Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and Bi-layered V2O5. Chem 2019, 5, 1537–1551.

[16]

Wang, P.; Zhang, Y. F.; Feng, Z. Y.; Liu, Y. Y.; Meng, C. G. A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. J. Colloid Interface Sci. 2022, 606, 1322–1332.

[17]

Wang, P.; Zhang, Y. F.; Jiang, H. M.; Dong, X. Y.; Meng, C. G. Ammonium vanadium oxide framework with stable NH4+ aqueous storage for flexible quasi-solid-state supercapacitor. Chem. Eng. J. 2022, 427, 131548.

[18]

Zhang, X. K.; Xia, M. T.; Yu, H. X.; Zhang, J. W.; Yang, Z. W.; Zhang, L. Y.; Shu, J. Hydrogen bond-assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 2021, 13, 139.

[19]

Zhang, X. K.; Xia, M. T.; Liu, T. T.; Peng, N.; Yu, H. X.; Zheng, R. T.; Zhang, L. Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767.

[20]

Chen, X. Y.; Wang, P.; Feng, Z. Y.; Meng, C. G.; Zhang, Y. F. Conductive polymer intercalated vanadium oxide on carbon cloth for fast ammonium-ion storage in supercapacitor applications. Chem. Eng. J. 2022, 445, 136747.

[21]

Chen, X. Y.; Wang, P.; Feng, Z. Y.; Liu, Y. Y.; Cui, M.; Meng, C. G.; Zhang, Y. F. Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors. Adv. Sens. Energy Mater. 2022, 1, 100013.

[22]

Ma, Y.; Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Ma, T.; Wang, Q. R.; Du, H. H.; Tao, Z. L. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 2022, 15, 2047–2051.

[23]

Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Y. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

[24]

Zhang, Y. Z.; Liang, J.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.

[25]

Wang, P. J.; Shi, X. D.; Wu, Z. X.; Guo, S.; Zhou, J.; Liang, S. Q. Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy 2020, 2, 294–301.

[26]
Wang, S. W.; Zhang, H.; Zhao, K.; Liu, W. Q.; Luo, N. R.; Zhao, J. N.; Wu, S. D.; Ding, J. W.; Fang, S. M.; Cheng, F. Y. Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability. Carbon Energy, in press, https://doi.org/10.1002/cey2.330.
[27]

Arnon, D. I.; Tsujimoto, H. Y.; Tang, G. M. S. Proton transport in photooxidation of water: A new perspective on photosynthesis. Proc. Natl. Acad. Sci. USA 1981, 78, 2942–2946.

[28]

Xiao, B. W. Intercalated water in aqueous batteries. Carbon Energy 2020, 2, 251–264.

[29]

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460.

[30]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Wang, X.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X. Y.; Wu, Z. S.; Qin, J. Q. Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy 2021, 84, 105876.

[31]

Sundriyal, S. K.; Sharma, Y. Controlled generation and tuning the oxygen defects in nanofibers of Ca2Fe2O5 toward high and stable Li-ion battery anode. Appl. Surf. Sci. 2021, 560, 150055.

[32]

Yao, Z. J.; Xia, X. H.; Zhang, S. Z.; Zhou, C. A.; Pan, G. X.; Xiong, Q. Q.; Wang, Y. D.; Wang, X. L.; Tu, J. P. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy Storage Mater. 2020, 25, 555–562.

[33]

Liang, X. Y.; Yan, L. J.; Li, W. P.; Bai, Y. C.; Zhu, C.; Qiang, Y. J.; Xiong, B. X.; Xiang, B.; Zou, X. F. Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy 2021, 87, 106164.

[34]

Nguyen, V. P.; Park, J. S.; Yuk, J. M.; Oh, M.; Kim, J. H.; Lee, S. M. Boosted Zn2+ storage performance of hydrated vanadium oxide by defect and heterostructure. J. Mater. Chem. A 2022, 10, 13428–13438.

[35]
Liu, Y. Y.; Feng, Z. Y.; Jiang, H. M.; Dong, X. Y.; Meng, C. G.; Zhang, Y. F. Tailoring NH4+ storage by regulating oxygen defect in ammonium vanadate. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2023.02.001.
[36]

Kuchena, S. F.; Wang, Y. Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 2020, 3, 11690–11698.

[37]

Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.

[38]

Chang, X.; Yang, X. F.; Qiao, Y.; Wang, S.; Zhang, M. H.; Xu, J.; Wang, D. H.; Bu, X. H. Confined heteropoly blues in defected Zr-MOF (bottle around ship) for high-efficiency oxidative desulfurization. Small 2020, 16, 1906432.

[39]

Liu, R. Q.; Liu, W. H.; Bu, Y. L.; Yang, W. W.; Wang, C.; Priest, C.; Liu, Z. W.; Wang, Y. Z.; Chen, J. Y.; Wang, Y. H. et al. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries. ACS Nano 2020, 14, 17308–17320.

[40]

Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.

[41]

Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

[42]

Meng, T.; Li, B.; Hu, L.; Yang, H.; Fan, W. J.; Zhang, S. Q.; Liu, P.; Li, M. Y.; Gu, F. L.; Tong, Y. X. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage. Small Methods 2019, 3, 1900185.

[43]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[44]

Tang, B. Y.; Fang, G. Z.; Zhou, J.; Wang, L. B.; Lei, Y. P.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587.

[45]

Liu, N. N.; Wu, X.; Yin, Y. Y.; Chen, A. S.; Zhao, C. Y.; Guo, Z. K.; Fan, L. S.; Zhang, N. Q. Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 28199–28205.

[46]

Guo, R. T.; Liu, X.; Xia, F. J.; Jiang, Y. L.; Zhang, H. Z.; Huang, M.; Niu, C. J.; Wu, J. S.; Zhao, Y.; Wang, X. P. et al. Large-scale integration of a zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv. Mater. 2022, 34, 2202188.

[47]

Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.

[48]

Wu, T. Q.; Zhao, Z. D.; Zhang, J. J.; Zhang, C.; Guo, Y. X.; Cao, Y. J.; Pan, S. X.; Liu, Y. C.; Liu, P. Y.; Ge, Y. H. et al. Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Mater. 2021, 36, 265–271.

[49]

Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Maer. 2019, 9, 1901457.

[50]

Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. tAdv. Energy Mater. 2021, 11, 2000808.

[51]

Lv, Z. Q.; Yue, M.; Ling, M. X.; Zhang, H. M.; Yan, J. W.; Zheng, Q.; Li, X. F. Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 2021, 11, 2003725.

[52]

Gong, J. N.; Bai, P. F.; Zhang, Y. F.; Wang, Q. S.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Feng, Z. Y.; Hu, T.; Meng, C. G. Vanadate ion promoting the transformation of α-phase molybdenum trioxide (α-MoO3) to h-phase MoO3 (h-MoO3) for boosted Zn-ion storage. J. Colloid Interface Sci. 2023, 647, 115–123.

[53]

Zhang, D. D.; Cao, J.; Zhang, X. Y.; Insin, N.; Wang, S. M.; Han, J. T.; Zhao, Y. S.; Qin, J. Q.; Huang, Y. H. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 2021, 31, 2009412.

[54]

Ma, S. Y.; Jiang, T.; Deng, J. B.; Zhang, Q.; Ou, Y. J.; Liu, X. H.; Lin, C. F.; Wang, K. K.; Zhao, X. S. VPO5: An all-climate lithium-storage material. Energy Storage Mater. 2022, 46, 366–373.

[55]

Walker, M. J.; Jarry, A.; Pronin, N.; Ballard, J.; Rubloff, G. W.; Brillson, L. J. Nanoscale depth and lithiation dependence of V2O5 band structure by cathodoluminescence spectroscopy. J. Mater. Chem. A 2020, 8, 11800–11810.

[56]

Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.

[57]

Yang, J.; Zhang, Q. C.; Wang, Z. X.; Wang, Z.; Kang, L. X.; Qi, M.; Chen, M. X.; Liu, W.; Gong, W. B.; Lu, W. B. et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv. Energy Mater. 2020, 10, 2001064.

[58]

Ma, Z. Y.; Rui, K.; Zhang, Y.; Li, D. S.; Wang, Q. Q.; Zhang, Q.; Du, M.; Yan, J. X.; Zhang, C.; Huang, X. et al. Nitrogen boosts defective vanadium oxide from semiconducting to metallic merit. Small 2019, 15, 1900583.

[59]

Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.

[60]

Liu, Y. Y.; Zhang, Y. F.; Jiang, H. M.; Sun, J. J.; Feng, Z. Y.; Hu, T.; Meng, C. G.; Pan, Z. H. Synergistic engineering of oxygen-defect and heterojunction boosts Zn2+ (de)intercalation kinetics in vanadium oxide for high-performance zinc-ion batteries. Chem. Eng. J. 2022, 435, 134949.

[61]

Zhang, Z. C. Y.; Xi, B. J.; Wang, X.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 2021, 31, 2103070.

[62]

Lu, W.; Yan, L.; Ye, W. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296.

[63]

Yao, Y.; Zhu, Y. H.; Pan, C. Q.; Wang, C. Y.; Hu, S. Y.; Xiao, W.; Chi, X.; Fang, Y. R.; Yang, J.; Deng, H. T. et al. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720–8730.

[64]

Yang, W.; Dong, L. B.; Yang, W.; Xu, C. J.; Shao, G. J.; Wang, G. X. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods 2020, 4, 1900670.

[65]

Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 2273–2278.

[66]

Padmapriya, S.; Harinipriya, S.; Jaidev, K.; Sudha, V.; Kumar, D.; Pal, S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int. J. Energy Res. 2018, 42, 1196–1209.

Nano Research
Pages 2646-2654
Cite this article:
Gong J, Bai P, Sun J, et al. Adjusting oxygen vacancy of VO2·xH2O nanoarray architectures for efficient NH4+ storage. Nano Research, 2024, 17(4): 2646-2654. https://doi.org/10.1007/s12274-023-6059-2
Topics:

891

Views

12

Crossref

13

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 16 June 2023
Revised: 26 July 2023
Accepted: 29 July 2023
Published: 31 August 2023
© Tsinghua University Press 2023
Return