Aqueous rechargeable batteries are the promising energy storge technology due to their safety, low cost, and environmental friendliness. Ammonium ion (NH4+) is an ideal charge carrier for such batteries because of its small hydration radius and low molar mass. In this study, VO2·xH2O with rich oxygen defects (d-HVO) is designed and synthesized, and it exhibits unique nanoarray structure and good electrochemical performances for NH4+ storge. Experimental and calculation results indicate that oxygen defects in d-HVO can enhance the conductivity and diffusion rate of NH4+, leading to improved electrochemical performances. The most significant improvement is observed in d-HVO with 2 mmol thiourea (d-HVO-2) (220 mAh·g−1 at 0.1 A·g−1), which has a moderate defect content. A full cell is assembled using d-HVO-2 as the anode and polyaniline (PANI) as the cathode, which shows excellent cycling stability with a capacity retention rate of 80% after 1000 cycles and outstanding power density up to 4540 W·kg−1. Moreover, the flexible d-HVO-2||PANI battery, based on quasi-solid electrolyte, shows excellent flexibility under different bending conditions. This study provides a new approach for designing and developing high-performance NH4+ storage electrode materials.
Cao, J.; Zhang, D. D.; Zhang, X. Y.; Sawangphruk, M.; Qin, J. Q.; Liu, R. P. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 2020, 8, 9331–9344.
Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.
Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.
Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.
Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.
Jiang, H. M.; Zhang, Y. F.; Waqar, M.; Yang, J.; Liu, Y. Y.; Sun, J. J.; Feng, Z. Y.; Sun, J. G.; Pan, Z. H.; Meng, C. G. et al. Anomalous Zn2+ storage behavior in dual-ion-in-sequence reconstructed vanadium oxides. Adv. Funct. Mater. 2023, 33, 2213127.
Wu, X. Y.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T. C.; Bi, X. X.; Yuan, Y. F.; Qi, Y. T.; Surta, T. W.; Huang, W. X. et al. Diffusion-free grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 2019, 4, 123–130.
Jiang, H.; Hong, J. J.; Wu, X. Y.; Surta, T. W.; Qi, Y. T.; Dong, S. Y.; Li, Z. F.; Leonard, D. P.; Holoubek, J. J.; Wong, J. C. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 2018, 140, 11556–11559.
Li, J.; Yan, H. H.; Xu, C. W.; Liu, Y. W.; Zhang, X. K.; Xia, M. T.; Zhang, L. Y.; Shu, J. Insights into host materials for aqueous proton batteries: Structure, mechanism and prospect. Nano Energy 2021, 89, 106400.
Wu, Y. L.; Dong, S. Y.; Lv, N.; Xu, Z. K.; Ren, R. Q.; Zhu, G. Y.; Huang, B. L.; Zhang, Y. Z.; Dong, X. C. Unlocking the high capacity ammonium-ion storage in defective vanadium dioxide. Small 2022, 18, 2204888.
Chao, D. L.; Fan, H. J. Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 2019, 5, 1359–1361.
Zheng, R. T.; Li, Y. H.; Yu, H. X.; Zhang, X. K.; Yang, D.; Yan, L.; Li, Y.; Shu, J.; Su, B. L. Ammonium ion batteries: Material, electrochemistry and strategy. Angew. Chem., Int. Ed. 2023, 62, e202301629.
Xia, M. T.; Zhang, X. K.; Yu, H. X.; Yang, Z. W.; Chen, S.; Zhang, L. Y.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759.
Wu, Y. L.; Xu, Z. K.; Ren, R. Q.; Lv, N.; Yang, J. Y.; Zhang, J. Y.; Ren, H.; Dong, S. Y.; Dong, X. C. Flexible ammonium-ion pouch cells based on a tunneled manganese dioxide cathode. ACS Appl. Mater. Interfaces 2023, 15, 12434–12442.
Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and Bi-layered V2O5. Chem 2019, 5, 1537–1551.
Wang, P.; Zhang, Y. F.; Feng, Z. Y.; Liu, Y. Y.; Meng, C. G. A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. J. Colloid Interface Sci. 2022, 606, 1322–1332.
Wang, P.; Zhang, Y. F.; Jiang, H. M.; Dong, X. Y.; Meng, C. G. Ammonium vanadium oxide framework with stable NH4+ aqueous storage for flexible quasi-solid-state supercapacitor. Chem. Eng. J. 2022, 427, 131548.
Zhang, X. K.; Xia, M. T.; Yu, H. X.; Zhang, J. W.; Yang, Z. W.; Zhang, L. Y.; Shu, J. Hydrogen bond-assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 2021, 13, 139.
Zhang, X. K.; Xia, M. T.; Liu, T. T.; Peng, N.; Yu, H. X.; Zheng, R. T.; Zhang, L. Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767.
Chen, X. Y.; Wang, P.; Feng, Z. Y.; Meng, C. G.; Zhang, Y. F. Conductive polymer intercalated vanadium oxide on carbon cloth for fast ammonium-ion storage in supercapacitor applications. Chem. Eng. J. 2022, 445, 136747.
Chen, X. Y.; Wang, P.; Feng, Z. Y.; Liu, Y. Y.; Cui, M.; Meng, C. G.; Zhang, Y. F. Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors. Adv. Sens. Energy Mater. 2022, 1, 100013.
Ma, Y.; Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Ma, T.; Wang, Q. R.; Du, H. H.; Tao, Z. L. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 2022, 15, 2047–2051.
Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Y. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.
Zhang, Y. Z.; Liang, J.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.
Wang, P. J.; Shi, X. D.; Wu, Z. X.; Guo, S.; Zhou, J.; Liang, S. Q. Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy 2020, 2, 294–301.
Arnon, D. I.; Tsujimoto, H. Y.; Tang, G. M. S. Proton transport in photooxidation of water: A new perspective on photosynthesis. Proc. Natl. Acad. Sci. USA 1981, 78, 2942–2946.
Xiao, B. W. Intercalated water in aqueous batteries. Carbon Energy 2020, 2, 251–264.
Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460.
Cao, J.; Zhang, D. D.; Yue, Y. L.; Wang, X.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X. Y.; Wu, Z. S.; Qin, J. Q. Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy 2021, 84, 105876.
Sundriyal, S. K.; Sharma, Y. Controlled generation and tuning the oxygen defects in nanofibers of Ca2Fe2O5 toward high and stable Li-ion battery anode. Appl. Surf. Sci. 2021, 560, 150055.
Yao, Z. J.; Xia, X. H.; Zhang, S. Z.; Zhou, C. A.; Pan, G. X.; Xiong, Q. Q.; Wang, Y. D.; Wang, X. L.; Tu, J. P. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy Storage Mater. 2020, 25, 555–562.
Liang, X. Y.; Yan, L. J.; Li, W. P.; Bai, Y. C.; Zhu, C.; Qiang, Y. J.; Xiong, B. X.; Xiang, B.; Zou, X. F. Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy 2021, 87, 106164.
Nguyen, V. P.; Park, J. S.; Yuk, J. M.; Oh, M.; Kim, J. H.; Lee, S. M. Boosted Zn2+ storage performance of hydrated vanadium oxide by defect and heterostructure. J. Mater. Chem. A 2022, 10, 13428–13438.
Kuchena, S. F.; Wang, Y. Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 2020, 3, 11690–11698.
Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.
Chang, X.; Yang, X. F.; Qiao, Y.; Wang, S.; Zhang, M. H.; Xu, J.; Wang, D. H.; Bu, X. H. Confined heteropoly blues in defected Zr-MOF (bottle around ship) for high-efficiency oxidative desulfurization. Small 2020, 16, 1906432.
Liu, R. Q.; Liu, W. H.; Bu, Y. L.; Yang, W. W.; Wang, C.; Priest, C.; Liu, Z. W.; Wang, Y. Z.; Chen, J. Y.; Wang, Y. H. et al. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries. ACS Nano 2020, 14, 17308–17320.
Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.
Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.
Meng, T.; Li, B.; Hu, L.; Yang, H.; Fan, W. J.; Zhang, S. Q.; Liu, P.; Li, M. Y.; Gu, F. L.; Tong, Y. X. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage. Small Methods 2019, 3, 1900185.
He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.
Tang, B. Y.; Fang, G. Z.; Zhou, J.; Wang, L. B.; Lei, Y. P.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587.
Liu, N. N.; Wu, X.; Yin, Y. Y.; Chen, A. S.; Zhao, C. Y.; Guo, Z. K.; Fan, L. S.; Zhang, N. Q. Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 28199–28205.
Guo, R. T.; Liu, X.; Xia, F. J.; Jiang, Y. L.; Zhang, H. Z.; Huang, M.; Niu, C. J.; Wu, J. S.; Zhao, Y.; Wang, X. P. et al. Large-scale integration of a zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv. Mater. 2022, 34, 2202188.
Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.
Wu, T. Q.; Zhao, Z. D.; Zhang, J. J.; Zhang, C.; Guo, Y. X.; Cao, Y. J.; Pan, S. X.; Liu, Y. C.; Liu, P. Y.; Ge, Y. H. et al. Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Mater. 2021, 36, 265–271.
Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Maer. 2019, 9, 1901457.
Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. tAdv. Energy Mater. 2021, 11, 2000808.
Lv, Z. Q.; Yue, M.; Ling, M. X.; Zhang, H. M.; Yan, J. W.; Zheng, Q.; Li, X. F. Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 2021, 11, 2003725.
Gong, J. N.; Bai, P. F.; Zhang, Y. F.; Wang, Q. S.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Feng, Z. Y.; Hu, T.; Meng, C. G. Vanadate ion promoting the transformation of α-phase molybdenum trioxide (α-MoO3) to h-phase MoO3 (h-MoO3) for boosted Zn-ion storage. J. Colloid Interface Sci. 2023, 647, 115–123.
Zhang, D. D.; Cao, J.; Zhang, X. Y.; Insin, N.; Wang, S. M.; Han, J. T.; Zhao, Y. S.; Qin, J. Q.; Huang, Y. H. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 2021, 31, 2009412.
Ma, S. Y.; Jiang, T.; Deng, J. B.; Zhang, Q.; Ou, Y. J.; Liu, X. H.; Lin, C. F.; Wang, K. K.; Zhao, X. S. VPO5: An all-climate lithium-storage material. Energy Storage Mater. 2022, 46, 366–373.
Walker, M. J.; Jarry, A.; Pronin, N.; Ballard, J.; Rubloff, G. W.; Brillson, L. J. Nanoscale depth and lithiation dependence of V2O5 band structure by cathodoluminescence spectroscopy. J. Mater. Chem. A 2020, 8, 11800–11810.
Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.
Yang, J.; Zhang, Q. C.; Wang, Z. X.; Wang, Z.; Kang, L. X.; Qi, M.; Chen, M. X.; Liu, W.; Gong, W. B.; Lu, W. B. et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv. Energy Mater. 2020, 10, 2001064.
Ma, Z. Y.; Rui, K.; Zhang, Y.; Li, D. S.; Wang, Q. Q.; Zhang, Q.; Du, M.; Yan, J. X.; Zhang, C.; Huang, X. et al. Nitrogen boosts defective vanadium oxide from semiconducting to metallic merit. Small 2019, 15, 1900583.
Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.
Liu, Y. Y.; Zhang, Y. F.; Jiang, H. M.; Sun, J. J.; Feng, Z. Y.; Hu, T.; Meng, C. G.; Pan, Z. H. Synergistic engineering of oxygen-defect and heterojunction boosts Zn2+ (de)intercalation kinetics in vanadium oxide for high-performance zinc-ion batteries. Chem. Eng. J. 2022, 435, 134949.
Zhang, Z. C. Y.; Xi, B. J.; Wang, X.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 2021, 31, 2103070.
Lu, W.; Yan, L.; Ye, W. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296.
Yao, Y.; Zhu, Y. H.; Pan, C. Q.; Wang, C. Y.; Hu, S. Y.; Xiao, W.; Chi, X.; Fang, Y. R.; Yang, J.; Deng, H. T. et al. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720–8730.
Yang, W.; Dong, L. B.; Yang, W.; Xu, C. J.; Shao, G. J.; Wang, G. X. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods 2020, 4, 1900670.
Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 2273–2278.
Padmapriya, S.; Harinipriya, S.; Jaidev, K.; Sudha, V.; Kumar, D.; Pal, S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int. J. Energy Res. 2018, 42, 1196–1209.