Publications
Sort:
Research Article Issue
Adjusting oxygen vacancy of VO2·xH2O nanoarray architectures for efficient NH4+ storage
Nano Research 2024, 17(4): 2646-2654
Published: 31 August 2023
Abstract PDF (3.2 MB) Collect
Downloads:88

Aqueous rechargeable batteries are the promising energy storge technology due to their safety, low cost, and environmental friendliness. Ammonium ion (NH4+) is an ideal charge carrier for such batteries because of its small hydration radius and low molar mass. In this study, VO2·xH2O with rich oxygen defects (d-HVO) is designed and synthesized, and it exhibits unique nanoarray structure and good electrochemical performances for NH4+ storge. Experimental and calculation results indicate that oxygen defects in d-HVO can enhance the conductivity and diffusion rate of NH4+, leading to improved electrochemical performances. The most significant improvement is observed in d-HVO with 2 mmol thiourea (d-HVO-2) (220 mAh·g−1 at 0.1 A·g−1), which has a moderate defect content. A full cell is assembled using d-HVO-2 as the anode and polyaniline (PANI) as the cathode, which shows excellent cycling stability with a capacity retention rate of 80% after 1000 cycles and outstanding power density up to 4540 W·kg−1. Moreover, the flexible d-HVO-2||PANI battery, based on quasi-solid electrolyte, shows excellent flexibility under different bending conditions. This study provides a new approach for designing and developing high-performance NH4+ storage electrode materials.

Total 1
1/11GOpage