AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater

Jie Tang1,§Shengjun Sun2,§Xun He2Hui Zhang2Chaoxin Yang2Min Zhang2Meng Yue2Hefeng Wang2Yuntong Sun2Yonglan Luo3Sulaiman Alfaifi4Asmaa Farouk5Mohamed S. Hamdy5Xuping Sun2,3( )Huiqing Wang6( )Binwu Ying1( )
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, China

§ Jie Tang and Shengjun Sun contributed equally to this work.

Show Author Information

Graphical Abstract

An amorphous FeMoO4 nanorod array on Ni foam acts as a high-efficiency and durable water oxidation electrocatalyst in alkaline seawater, requiring an overpotential of only 332 mV to achieve 300 mA·cm−2.

Abstract

The development of highly efficient and durable oxygen evolution reaction (OER) catalysts for seawater electrolysis is of great importance for applications. Here, an amorphous FeMoO4 nanorod array on Ni foam is reported as a highly active OER electrocatalyst in alkaline seawater, requiring only overpotentials of 303 and 332 mV to achieve 100 and 300 mA·cm−2, respectively. Moreover, it shows strong long-term electrochemical durability for at least 50 h.

Electronic Supplementary Material

Download File(s)
12274_2023_6087_MOESM1_ESM.pdf (855.8 KB)

References

[1]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[2]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[3]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[4]

Fang, X. D.; Wang, X. G.; Ouyang, L.; Zhang, L. C.; Sun, S. J.; Liang, Y. M.; Luo, Y. S.; Zheng, D. D.; Kang, T. R.; Liu, Q. et al. Amorphous Co-Mo-B film: A high-active electrocatalyst for hydrogen generation in alkaline seawater. Molecules 2022, 27, 7617.

[5]

Fan, M. H.; Zhang, B.; Wang, L. N.; Li, Z. Y.; Liang, X.; Ai, X.; Zou, X. X. Germanium-regulated adsorption site preference on ruthenium electrocatalyst for efficient hydrogen evolution. Chem. Commun. 2021, 57, 3889–3892.

[6]

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

[7]

Ouyang, L.; He, X.; Sun, Y. T.; Zhang, L. C.; Zhao, D. L.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Asiri, A. M.; Liu, Q. et al. RuO2 nanoparticle-decorated TiO2 nanobelt array as a highly efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Inorg. Chem. Front. 2022, 9, 6602–6607.

[8]

Vörösmarty, C. J.; McIntyre, P. B.; Gessner, M. O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S. E.; Sullivan, C. A.; Liermann, C. R. et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561.

[9]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[10]

Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

[11]
Yue, M.; He, X.; Sun, S. J.; Sun, Y. T.; Hamdy, M. S.; Benaissa, M.; Salih, A. A. M.; Liu, J.; Sun, X. P. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Res., in press, https://doi.org/10.1007/s12274-023-6002-6.
[12]

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

[13]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[14]

Wu, Q.; Gao, Q. P.; Shan, B.; Wang, W. Z.; Qi, Y. P.; Tai, X. S.; Wang, X.; Zheng, D. D.; Yan, H.; Ying, B. W. et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. Chim. Sin. 2023, 39, 2303012.

[15]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[16]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[17]

Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y., S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

[18]

Lin, M. H.; Yang, Y.; Song, Y. H.; Guo, D. G.; Yang, L. P.; Liu, L. Engineering active sites on hierarchical transition bimetal oxyhydride/bicarbonate heterostructure for oxygen evolution catalysis in seawater splitting. Nano Res. 2023, 16, 2094–2101.

[19]

Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.

[20]

Sun, J. P.; Li, J.; Li, Z. Z.; Li, C. H.; Ren, G. M.; Zhang, Z. S.; Meng, X. C. Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis. ACS Sustainable Chem. Eng. 2022, 10, 9980–9990.

[21]

Yu, Y.; Li, J.; Luo, J.; Kang, Z.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Deng, P.; Shen, Y. et al. Mo-decorated cobalt phosphide nanoarrays as bifunctional electrocatalysts for efficient overall water/seawater splitting. Mater. Today Nano 2022, 18, 100216.

[22]

Yang, M.; Shi, B. B.; Tang, Y. L.; Lu, H. X.; Wang, G.; Zhang, S. L.; Sarwar, M. T.; Tang, A. D.; Fu, L. J.; Wu, M. J. et al. Interfacial chemical bond modulation of Co3(PO4)2-MoO3−x heterostructures for alkaline water/seawater splitting. Inorg. Chem. 2023, 62, 2838–2847.

[23]

Yang, P.; Ren, M. L.; Jin, C. C.; Xing, H. L. Facile synthesis of N and P co-doped NiMoO4 hollow nanowires and electrochemical deposition of NiFe-layered double hydroxide for boosting overall seawater splitting. J. Electrochem. Soc. 2022, 169, 046511.

[24]

Das, C.; Roy, P. Cobalt and iron phosphates with modulated compositions and phases as efficient electrocatalysts for alkaline seawater oxidation. Chem. Commun. 2022, 58, 6761–6764.

[25]

Ning, M. H.; Zhang, F. H.; Wu, L. B.; Xing, X. X.; Wang, D. Z.; Song, S. W.; Zhou, Q. C.; Yu, L.; Bao, J. M.; Chen, S. et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 2022, 15, 3945–3957.

[26]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[27]

Bao, Y. J.; Wu, Z. Y.; Liu, B. B.; Zhong, K. X.; Guo, M. L.; Tu, J. C.; Wang, B. R.; Lai, X. Y. Fe-doped Ni3S2 nanosheets on Ni foam for alkaline seawater oxidation. ACS Appl. Nano Mater. 2023, 6, 4360–4369.

[28]

Yu, X. F.; He, X.; Li, R.; Gou, X. L. One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density. Dalton Trans. 2021, 50, 8102–8110.

[29]

Zhang, M.; He, X.; Dong, K.; Zhang, H.; Yao, Y. C.; Yang, C. X.; Yue, M.; Sun, S. J.; Sun, Y. T.; Zheng, D. D. et al. Chromium doping enabled improvement in alkaline seawater oxidation over cobalt carbonate hydroxide nanowire array. Chem. Commun. 2023, 59, 9750–9753.

[30]

Wu, J.; Wang, Z. X.; Li, S. W.; Niu, S. Q.; Zhang, Y. Y.; Hu, J.; Zhao, J. X.; Xu, P. FeMoO4 nanorods for efficient ambient electrochemical nitrogen reduction. Chem. Commun. 2020, 56, 6834–6837.

[31]

Wang, Y. H.; He, P.; Lei, W.; Dong, F. Q.; Zhang, T. H. Novel FeMoO4/graphene composites based electrode materials for supercapacitors. Compos. Sci. Technol. 2014, 103, 16–21.

[32]

He, X.; Li, J.; Li, R. Z.; Zhao, D. L.; Zhang, L. C.; Ji, X. C.; Fan, X. Y.; Chen, J.; Wang, Y.; Luo, Y. S. et al. Ambient ammonia synthesis via nitrate electroreduction in neutral media on Fe3O4 nanoparticles-decorated TiO2 nanoribbon array. Inorg. Chem. 2023, 62, 25–29.

[33]

Liu, Y. P.; Luo, Y. J.; Li, Q. Q.; Wang, J.; Chu, K. Bimetallic MnMoO4 with dual-active-centers for highly efficient electrochemical N2 fixation. Chem. Commun. 2020, 56, 10227–10230.

[34]

Guo, X. J.; Jia, J. L.; Gao, P.; Zhang, T.; Zha, F.; Tang, X. H.; Tian, H. F.; Zuo, Z. J. Flower-like FeMoO4@1T-MoS2 micro-sphere for effectively cleaning binary dyes via photo-Fenton oxidation. J. Colloid Interface Sci. 2022, 622, 284–297.

Nano Research
Pages 2270-2275
Cite this article:
Tang J, Sun S, He X, et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Research, 2024, 17(4): 2270-2275. https://doi.org/10.1007/s12274-023-6087-y
Topics:

742

Views

17

Crossref

17

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 28 June 2023
Revised: 30 July 2023
Accepted: 13 August 2023
Published: 31 August 2023
© Tsinghua University Press 2023
Return