AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption

Jia Zhao( )Zhe GuQingguo Zhang( )
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
Show Author Information

Graphical Abstract

Superior electromagnetic (EM) wave absorption performances of MoS2@C nanocomposites with distinctive three-dimensional structure could be attributed to the excellent impedance matching characteristic and dielectric loss capacity (conduction loss and polarization loss).

Abstract

The key to solve increasingly severe electromagnetic (EM) pollution is to explore sustainable, easily prepared, and cost-effective EM wave absorption materials with exceptional absorption capability. Herein, instead of anchoring on carbon materials in single layer, MoS2 flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets (C) to fabricate MoS2@C nanocomposites by a facile solvothermal process. EM wave absorption performances of MoS2@C nanocomposites in X-band were systematically investigated, indicating the minimum reflection loss (RLmin) of −62.3 dB (thickness of 2.88 mm) and effective absorption bandwidth (EAB) almost covering the whole X-band (thickness of 2.63 mm) with the filler loading of only 20 wt.%. Superior EM wave absorption performances of MoS2@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity (conduction loss and polarization loss). This study revealed that the as-prepared MoS2@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.

Electronic Supplementary Material

Download File(s)
12274_2023_6090_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Shu, R. W.; Yang, X. H.; Zhao, Z. W. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 2023, 210, 118047.

[2]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[3]

Lou, Z. C.; Wang, Q. Y.; Zhou, X. D.; Kara, U. I.; Mamtani, R. S.; Lv, H. L.; Zhang, M.; Yang, Z. H.; Li, Y. J.; Wang, C. X. et al. An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 2022, 113, 33–39.

[4]

Shu, R. W.; Zhao, Z. W.; Yang, X. H. Synthesis of hollow CuFe2O4 microspheres decorated nitrogen-doped graphene hybrid composites for broadband and efficient electromagnetic absorption. J. Colloid Interface Sci. 2023, 648, 66–77.

[5]
Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull., in press, https://doi.org/10.1016/j.scib.2023.07.046.
[6]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[7]

Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754–5761.

[8]

Cui, X. Q.; Liang, X. H.; Liu, W.; Gu, W. H.; Ji, G. B.; Du, Y. W. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.

[9]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[10]

Shu, R. W.; Wu, J. J.; Yang, X. H. Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107677.

[11]

Cheng, Y.; Zhao, H. Q.; Zhao, Y.; Cao, J. M.; Zheng, J.; Ji, G. B. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020, 161, 870–879.

[12]

E, T.; Ma, Z. Y.; Cai, D.; Yang, S. Y.; Li, Y. Enhancement of interfacial charge transfer of TiO2/graphene with doped Ca2+ for improving electrical conductivity. ACS Appl. Mater. Interfaces 2021, 13, 41875–41885.

[13]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[14]

Liu, X. D.; Huang, Y.; Zhao, X. X.; Han, X. P.; Jia, Y. W.; Zong, M. Core-shell N-doped carbon nanofibers@poly(3,4-ethylenedioxythiophene): Flexible composite fibers for enhanced electromagnetic wave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 163, 107227.

[15]

Li, W. X.; Li, B. Q.; Zhao, Y. L.; Wei, X. Q.; Guo, F. Facile synthesis of Fe3O4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption. J. Colloid. Interface. Sci. 2023, 645, 76–85.

[16]

Ren, Q. Q.; Yao, L. W.; Sun, Y. S.; Zhu, H. Y.; Wang, Y. N.; Zhang, H.; Yun, J. N.; Yan, J. F.; Zhang, Z. Y.; Zhao, W. Enhanced electromagnetic wave absorption properties of ultrathin SnO nanosheets/carbon nanotube hybrids. J. Alloys Compd. 2023, 960, 170694.

[17]

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

[18]

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

[19]

Mou, P. P.; Zhao, J. C.; Wang, G. Z.; Shi, S. H.; Wan, G. P.; Zhou, M. F.; Deng, Z.; Teng, S. J.; Wang, G. L. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem. Eng. J. 2022, 437, 135285.

[20]

Chang, Q. L.; Li, C. P.; Sui, J.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Cage-like eggshell membrane-derived Co-CoxSy-Ni/N, S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 2022, 430, 132650.

[21]

Luo, J. H.; Dai, Z. Y.; Feng, M. N.; Chen, X. W.; Sun, C. H.; Xu, Y. Hierarchically porous carbon derived from natural porphyra for excellent electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 129, 206–214.

[22]

Zhang, D. Q.; Zhang, H. B.; Cheng, J. Y.; Raza, H.; Liu, T. T.; Liu, B.; Ba, X. W.; Zheng, G. P.; Chen, G. H.; Cao, M. S. Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 2020, 8, 5923–5933.

[23]

Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; Xiong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.

[24]

Zhang, D. Q.; Liu, T. T.; Cheng, J. Y.; Cao, Q.; Zheng, G. P.; Liang, S.; Wang, H.; Cao, M. S. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 2019, 11, 38.

[25]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[26]

Fang, X. R.; Wei, P.; Wang, L.; Wang, X. S.; Chen, B.; He, Q. Y.; Yue, Q. Y.; Zhang, J. D.; Zhao, W. et al. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl. Mater. Interfaces 2018, 10, 13011–13018.

[27]

Adhikari, S.; Mandal, S.; Kim, D. H. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem. Eng. J. 2019, 373, 31–43.

[28]

Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

[29]

Sun, C. L.; Zhao, K. N.; He, Y.; Zheng, J. M.; Xu, W. W.; Zhang, C. Y.; Wang, X. Guo, M.H. ;Mai, L. Q.; Wang, C. M. et al. Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-Ion battery. ACS Appl. Mater. Interfaces 2019, 11, 20762–20769.

[30]

Guo, H. Q.; Wang, L.; You, W. B.; Yang, L. T.; Li, X.; Chen, G. Y.; Wu, Z. C.; Qian, X.; Wang, M.; Che, R. C. Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 2020, 12, 16831–16840.

[31]

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

[32]

Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.

[33]

Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253.

[34]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[35]

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

[36]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[37]

Zhao, J.; Li, M.; Gao, X. G. Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 2022, 915, 165439.

[38]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core–shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

[39]

Lian, Y. L.; Han, B. H.; Liu, D. W.; Wang, Y. H.; Zhao, H. H.; Xu, P.; Han, X. J.; Du, Y. C. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 2020, 12, 153.

[40]

Wang, X. Y.; Zhu, T.; Chang, S. C.; Lu, Y. K.; Mi, W. B.; Wang, W. 3D nest-like architecture of core–shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264.

[41]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[42]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[43]

Zhang, W. D.; Zhang, X.; Zheng, Y.; Guo, C.; Yang, M. Y.; Li, Z.; Wu, H. J.; Qiu, H.; Yan, H. X.; Qi, S. H. Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5865–5875.

[44]

Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

[45]

Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

[46]

Zhang, W. L.; Zhao, J. M.; Cai, C. C.; Qin, Y.; Meng, X. J.; Liu, Y. H.; Nie, S. X. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. (Weinh.) 2022, 9, 2203428.

[47]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[48]

Cui, E. B.; Pan, F.; Xiang, Z.; Liu, Z. C.; Yu, L. Z.; Xiong, J.; Li, X.; Lu, W. Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2021, 23, 2000827.

[49]

Yan, X.; Huang, X. X.; Zhong, B.; Wu, T.; Wang, H. T.; Zhang, T.; Bai, N.; Zhou, G. P.; Pan, H.; Wen, G. W. et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 2020, 391, 123538.

[50]

Li, X.; Huang, C.; Wang, Z. L.; Xiang, Z.; Lu, W. Enhanced electromagnetic wave absorption of layered FeCo@carbon nanocomposites with a low filler loading. J. Alloys Compd. 2021, 879, 160465.

[51]

Xiang, Z.; Deng, B. W.; Huang, C.; Liu, Z. C.; Song, Y. M.; Lu, W. Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2020, 822, 153570.

[52]

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

[53]

Kong, L.; Yin, X. W.; Zhang, Y. J.; Yuan, X. Y.; Li, Q.; Ye, F.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711.

[54]

Kong, L.; Yin, X. W.; Yuan, X. Y.; Zhang, Y. J.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193.

[55]

Zhao, J.; Lu, Y. J.; Ye, W. L.; Wang, L.; Liu, B.; Lv, S. S.; Chen, L. X.; Gu, J. W. Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019, 45, 20282–20289.

[56]

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

[57]

Liu, Y.; Jian, X. Y.; Su, X. L.; Luo, F.; Xu, J.; Wang, J. B.; He, X. H.; Qu, Y. H. Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloys Compd. 2018, 740, 68–76.

Nano Research
Pages 1607-1615
Cite this article:
Zhao J, Gu Z, Zhang Q. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Research, 2024, 17(3): 1607-1615. https://doi.org/10.1007/s12274-023-6090-3
Topics:
Part of a topical collection:

1216

Views

56

Crossref

70

Web of Science

53

Scopus

0

CSCD

Altmetrics

Received: 01 August 2023
Revised: 11 August 2023
Accepted: 12 August 2023
Published: 18 September 2023
© Tsinghua University Press 2023
Return