AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced fluorescence sensing of tetracycline with Ti2C quantum dots

Dejia Hu1,§ShangZuo Jiang1,§Tianhao Xia1Danyang Xiao1Yan Li1( )Yanbing Hou2Jin Zhong Zhang3Ying-Chih Pu4
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Key Lab Luminescence & Optical Information, Ministry Education, Beijing JiaoTong University, Beijing 100044, China
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
Department of Materials Science, "National University of Tainan", Tainan 700301, Taiwan, China

§ Dejia Hu and ShangZuo Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

The interaction between Ti2C quantum dots (QDs) and tetracycline (Tc) leads the formation of Tc’s isomers with amide structures, achieving enhanced fluorescence at 514 nm.

Abstract

Ti2C quantum dots (QDs) with rich surface functional groups have been synthesized using a hydrothermal method, and used to detect tetracycline (Tc) based on enhanced fluorescence. The interaction between the surface functional groups of Ti2C QDs and Tc enhanced the fluorescence of Tc at 514 nm, which is used to detect Tc quickly and accurately. Under optimal conditions, the fluorescence intensity was linear to the concentration of Tc in the range of 50.0–30.0 μM, with a detection limit of 21.6 nM. Furthermore, the Tc-Ti2C QDs detection system was evaluated for detection of Tc in milk and artificial urine. This study demonstrates a new and simple strategy for Tc detection, which is important for food safety and human health.

Electronic Supplementary Material

Download File(s)
12274_2023_6134_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Feng, L. X.; Huo, Z. Z.; Xiong, J. P.; Li, H. M. Certification of amyloid-beta (Aβ) certified reference materials by amino acid-based isotope dilution high-performance liquid chromatography mass spectrometry and sulfur-based high-performance liquid chromatography isotope dilution inductively coupled plasma mass spectrometry. Anal. Chem. 2020, 92, 13229–13237.

[2]

Zhang, Y. L.; Hassan, M.; Rong, Y. W.; Liu, R.; Li, H. H.; Ouyang, Q.; Chen, Q. S. An upconversion nanosensor for rapid and sensitive detection of tetracycline in food based on magnetic-field-assisted separation. Food Chem. 2022, 373, 131497.

[3]

Gossen, M.; Freundlieb, S.; Bender, G.; Müller, G.; Hillen, W.; Bujard, H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995, 268, 1766–1769.

[4]

Nolivos, S.; Cayron, J.; Dedieu, A.; Page, A.; Delolme, F.; Lesterlin, C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science 2019, 364, 778–782.

[5]

Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260.

[6]

Yu, J. F.; Tang, L.; Pang, Y.; Zeng, G. M.; Wang, J. J.; Deng, Y. C.; Liu, Y. N.; Feng, H. P.; Chen, S.; Ren, X. Y. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146–159.

[7]

Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227.

[8]

Jia, L.; Chen, R. J.; Xu, J.; Zhang, L. N.; Chen, X. Z.; Bi, N.; Gou, J.; Zhao, T. Q. A stick-like intelligent multicolor nano-sensor for the detection of tetracycline: The integration of nano-clay and carbon dots. J. Hazard. Mater. 2021, 413, 125296.

[9]

Wang, X. N.; Jia, J. P.; Wang, Y. L. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282.

[10]

Zhang, P. Z.; Li, Y. F.; Cao, Y. Y.; Han, L. J. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348.

[11]

Zhang, Q. C.; Jiang, L.; Wang, J.; Zhu, Y. F.; Pu, Y. J.; Dai, W. D. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl. Catal. B: Environ. 2020, 277, 119122.

[12]

Ni, J. X.; Wang, W.; Liu, D. M.; Zhu, Q.; Jia, J. L.; Tian, J. Y.; Li, Z. Y.; Wang, X.; Xing, Z. P. Oxygen vacancy-mediated sandwich-structural TiO2−x/ultrathin g-C3N4/TiO2−x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics. J. Hazard. Mater. 2021, 408, 124432.

[13]

Zhang, L.; Chen, L. G. Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl. Mater. Interfaces 2016, 8, 16248–16256.

[14]

Gao, X.; Niu, J.; Wang, Y. F.; Ji, Y.; Zhang, Y. L. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites. J. Hazard. Mate. 2021, 403, 123860.

[15]

Wang, J. X.; Cheng, R. J.; Wang, Y. Y.; Sun, L.; Chen, L.; Dai, X. H.; Pan, J. M.; Pan, G. Q.; Yan, Y. S. Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples. Sens. Actuators B: Chem. 2018, 263, 533–542.

[16]

Yang, X. M.; Luo, Y. W.; Zhu, S. S.; Feng, Y. J.; Zhuo, Y.; Dou, Y. One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens. Bioelectron. 2014, 56, 6–11.

[17]

Wu, Z. T.; Zhou, Y. B.; Huang, H. Y.; Su, Z. E.; Chen, S. M.; Rong, M. C. BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline. Sens. Actuators B: Chem. 2021, 332, 129530.

[18]

Ramezani, M.; Mohammad Danesh, N.; Lavaee, P.; Abnous, K.; Mohammad Taghdisi, S. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron. 2015, 70, 181–187.

[19]

Wang, W. J.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Zhou, C. Y.; Xiong, W. P.; Yang, Y.; Lei, L.; Liu, Y. et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. Chem. Eng. J. 2019, 378, 122132.

[20]

Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Zhang, C.; Yi, H.; Li, B. S.; Deng, R.; Liu, S. Y. et al. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Analyt. Chem. 2018, 109, 260–274.

[21]

Tan, H. L.; Chen, Y. Silver nanoparticle enhanced fluorescence of europium(III) for detection of tetracycline in milk. Sens. Actuators B: Chem. 2012, 173, 262–267.

[22]

Zhou, Z.; Wang, Q. M.; Wang, J. Y.; Zhang, C. C. Imaging two targets in live cells based on rational design of lanthanide organic structure appended carbon dots. Carbon 2015, 93, 671–680.

[23]

Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

[24]

Xu, G. F.; Niu, Y. S.; Yang, X. C.; Jin, Z. Y.; Wang, Y.; Xu, Y. H.; Niu, H. T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv. Opt. Mater. 2018, 6, 1800951.

[25]

Zhou, X.; Qin, Y.; He, X. X.; Li, Q.; Sun, J.; Lei, Z. B.; Liu, Z. H. Ti3C2Tx nanosheets/Ti3C2Tx quantum dots/rGO (reduced graphene oxide) fibers for an all-solid-state asymmetric supercapacitor with high volume energy density and good flexibility. ACS Appl. Mater. Interfaces 2020, 12, 11833–11842.

[26]

Wang, L. F.; Zhang, N. N.; Li, Y.; Kong, W. H.; Gou, J. Y.; Zhang, Y. J.; Wang, L. N.; Yu, G. H.; Zhang, P.; Cheng, H. H. et al. Mechanism of nitrogen-doped Ti3C2 quantum dots for free-radical scavenging and the ultrasensitive H2O2 detection performance. ACS Appl. Mater. Interfaces 2021, 13, 42442–42450.

[27]

Guo, Z.; Zhu, X. H.; Wang, S. G.; Lei, C. Y.; Huang, Y.; Nie, Z.; Yao, S. Z. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 2018, 10, 19579–19585.

[28]

Xu, Q.; Ding, L.; Wen, Y. Y.; Yang, W. J.; Zhou, H. J.; Chen, X. Z.; Street, J.; Zhou, A.; Ong, W. J.; Li, N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 2018, 6, 6360–6369.

[29]

Chen, X.; Li, J.; Pan, G. C.; Xu, W.; Zhu, J. Y.; Zhou, D. L.; Li, D. Y.; Chen, C.; Lu, G. Y.; Song, H. W. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B: Chem. 2019, 289, 131–137.

[30]

Shao, B. B.; Liu, Z. F.; Zeng, G. M.; Wang, H.; Liang, Q. H.; He, Q. Y.; Cheng, M.; Zhou, C. Y.; Jiang, L. B.; Song, B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects. J. Mater. Chem. A 2020, 8, 7508–7535.

[31]

Wang, H. M.; Zhao, R.; Hu, H. X.; Fan, X. W.; Zhang, D. J.; Wang, D. 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 2020, 12, 40176–40185.

[32]

Tang, R.; Zhou, S. J.; Li, C. X.; Chen, R.; Zhang, L. Y.; Zhang, Z. W.; Yin, L. W. Janus-structured co-Ti3C2 MXene quantum dots as a schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 2000637.

[33]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[34]

Gao, X. H.; Shao, X. C.; Qin, L. L.; Li, Y. J.; Huang, S. X.; Deng, L. W. N,N-dimethylformamide regulating fluorescence of MXene quantum dots for the sensitive determination of Fe3+. Nanoscale Res. Lett. 2021, 16, 160.

[35]

Lu, S. Y.; Sui, L. Z.; Liu, Y.; Yong, X.; Xiao, G. J.; Yuan, K. J.; Liu, Z. Y.; Liu, B. Z.; Zou, B.; Yang, B. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv. Sci. 2019, 6, 1801470.

[36]

Bai, Y. X.; He, Y.; Wang, M. M.; Song, G. W. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sens. Actuators B: Chem. 2022, 357, 131410.

[37]

Liu, Y. H.; Zhang, W.; Zheng, W. T. Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 2022, 14, 158.

[38]

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

[39]

Zhang, T.; Zhang, L.; Hou, Y. L. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164–182.

[40]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. W. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 2022, 15, 2746–2755.

[41]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[42]

Jiang, S. Z.; Hu, D. J.; Qi, Z. J.; Wang, L. F.; Li, Y. V2CTx MXene nanosheets as enhanced free-radical scavengers for alleviating oxidative stress. ACS Appl. Nano Mater. 2023, 6, 3121–3127.

[43]

Sariga; Babu, A. M.; Kumar, S. V. S.; Rajeev, R.; Thadathil, D. A.; Varghese, A. New horizons in the synthesis, properties, and applications of MXene quantum dots. Adv. Mater. Interfaces 2023, 10, 2202139.

[44]

Xue, Q.; Pei, Z. X.; Huang, Y.; Zhu, M. S.; Tang, Z. J.; Li, H. F.; Huang, Y.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2017, 5, 20818–20823.

[45]

Zango, Z. U.; Jumbri, K.; Sambudi, N. S.; Bakar, N. H. H. A.; Abdullah, N. A. F.; Basheer, C.; Saad, B. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019, 9, 41490–41501.

[46]

Rezaei, A.; Hadian-Dehkordi, L.; Samadian, H.; Jaymand, M.; Targhan, H.; Ramazani, A.; Adibi, H.; Deng, X. L.; Zheng, L. X.; Zheng, H. J. Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 2021, 11, 4411.

[47]

Yue, F. L.; Liu, M. Y.; Bai, M. Y.; Hu, M. J.; Li, F. L.; Guo, Y. M.; Vrublevsky, I.; Sun, X. Novel electrochemical aptasensor based on ordered mesoporous carbon/2D Ti3C2 MXene as nanocarrier for simultaneous detection of aminoglycoside antibiotics in milk. Biosensors 2022, 12, 626.

[48]

Xia, Y.; Que, L. F.; Yu, F. D.; Deng, L.; Liang, Z. J.; Jiang, Y. S.; Sun, M. Y.; Zhao, L.; Wang, Z. B. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 2022, 14, 143.

[49]

Gou, J. Y.; Zhao, L.; Li, Y.; Zhang, J. Z. Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 2021, 4, 12308–12315.

[50]
Nelson. M.; Hillen, W.; Greenwald, R. A. Tetracyclines in Biology, Chemistry and Medicine; Birkhäuser Basel: Basel, 2001; pp 82–83.
[51]

Morrison, H.; Olack, G.; Xiao, C. H. Organic photochemistry. 93. Photochemical and photophysical studies of tetracycline. J. Am. Chem. Soc. 1991, 113, 8110–8118.

[52]

Jin, X.; Xu, H. Z.; Qiu, S. S.; Jia, M. Y.; Wang, F.; Zhang, A. Q.; Jiang, X. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature. J. Photochem. Photobiol. A:Chem. 2017, 332, 224–231.

[53]

Carlotti, B.; Fuoco, D.; Elisei, F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys. Chem. Chem. Phys. 2010, 12, 15580–15591.

[54]

Huang, D.; Wu, J. Z.; Wang, L.; Liu, X. M.; Meng, J.; Tang, X. J.; Tang, C. X.; Xu, J. M. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem. Eng. J. 2019, 358, 1399–1409.

[55]

Peng, A. P.; Wang, C.; Zhang, Z. H.; Jin, X.; Gu, C.; Chen, Z. Y. Tetracycline photolysis revisited: Overlooked day-night succession of the parent compound and metabolites in natural surface waters and associated ecotoxicity. Water Res. 2022, 225, 119197.

[56]

Mojica, E. R. E.; Nguyen, E.; Rozov, M.; Bright, F. V. pH-dependent spectroscopy of tetracycline and its analogs. J. Fluoresc. 2014, 24, 1183–1198.

[57]

Abbasi, M. M.; Babaei, H.; Ansarin, M.; Nourdadgar, A. O. S.; Nemati, M. Simultaneous determination of tetracyclines residues in bovine milk samples by solid phase extraction and HPLC-FL method. Adv. Pharm. Bull., 2011, 1, 34–39.

[58]

Shirani, M. P.; Rezaei, B.; Ensafi, A. A.; Ramezani, M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem. 2021, 339, 127920.

[59]

Hu, X. L.; Zhao, Y. Q.; Dong, J. Y.; Liu, C.; Qi, Y.; Fang, G. Z.; Wang, S. A strong blue fluorescent nanoprobe based on Mg/N co-doped carbon dots coupled with molecularly imprinted polymer for ultrasensitive and highly selective detection of tetracycline in animal-derived foods. Sens. Actuators B: Chem. 2021, 338, 129809.

[60]

Zhang, S. Q.; Sun, Q. X.; Liu, X.; Li, H. Y.; Wang, J. H.; Chen, M. L. Ratiometric fluorescence detection of tetracycline for tetracycline adjuvant screening in bacteria. Sens. Actuators B: Chem. 2022, 372, 132687.

[61]

Li, R. X.; Wang, W. J.; El-Sayed, E. S. M.; Su, K. Z.; He, P. L.; Yuan, D. Q. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal-organic framework. Sens. Actuators B: Chem. 2021, 330, 129314.

[62]

Yao, R. H.; Li, Z. J.; Liu, G.; Fan, C. B.; Pu, S. Z. Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline. Talanta 2021, 234, 122612.

[63]

Gan, Z. Y.; Hu, X. T.; Xu, X. C.; Zhang, W.; Zou, X. B.; Shi, J. Y.; Zheng, K. Y.; Arslan, M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501.

Nano Research
Pages 3180-3188
Cite this article:
Hu D, Jiang S, Xia T, et al. Enhanced fluorescence sensing of tetracycline with Ti2C quantum dots. Nano Research, 2024, 17(4): 3180-3188. https://doi.org/10.1007/s12274-023-6134-8
Topics:

385

Views

6

Crossref

6

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 25 July 2023
Revised: 25 August 2023
Accepted: 25 August 2023
Published: 03 October 2023
© Tsinghua University Press 2023
Return