AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water

Feixue Gao1Zhe Wang1Ming Fang1( )Xiaoli Tan1,3( )Shao Hui Xu2Mao Liu2Guang Tao Fei2( )Li De Zhang2( )
MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China
Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
Show Author Information

Graphical Abstract

A low-costed calcium phosphate nanorods are fabricated and used to piezocatalytically produce H2O2 for the extraction of U(VI).

Abstract

The application of nanomaterials in energy and environmental fields has recently made great progress. As a key element in the nuclear industry, the discharge of uranium (U(VI)) contained wastewater usually induces environmental issues and waste of resources. Although the catalytically generated H2O2 by nanomaterials has recently shown application potential in extracting U(VI) from water, low-cost and highly efficient nanocatalysts are still urgently needed. In this work, a cheap and readily available piezocatalyst of calcium phosphate nanorods was successfully fabricated by calcining chicken bones. Under ultrasonication, H2O2 was produced and used to extract U(VI) from water. It is worth noting that the yield of H2O2 reached 179.7 μmol·g−1·h−1, and the extraction efficiency of U(VI) in water reached 97.16% (100 ppm) within 330 min. Through the capture and quantitative analysis of the active species, it is found that the generation of H2O2 depends on the combination of soluble oxygen and piezoelectrons, which thus dominates the extraction of U(VI). This simple and powerful piezocatalytic strategy greatly reduces the cost of H2O2 production for U(VI) extraction in water, and is of great significance for the treatment of U(VI)-containing wastewater.

Electronic Supplementary Material

Download File(s)
12274_2023_6159_MOESM1_ESM.pdf (696.9 KB)

References

[1]

Dai, Z. R.; Zhen, Y.; Sun, Y. S.; Li, L.; Ding, D. X. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 2021, 415, 129002.

[2]

Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441–16446.

[3]

Cai, Y. W.; Ma, Y. P.; Feng, J. H.; Zhu, M. Y.; Wang, X.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Insight into the performance and mechanism of low-cost phytic acid modified Zn-Al-Ti LMO for U(VI) removal. Chem. Eng. J. 2020, 402, 125510.

[4]

Zhang, Y. F.; Zhu, M. Y.; Zhang, S.; Cai, Y. W.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B Environ. 2020, 279, 119390.

[5]

Chen, Z. S.; Wang, J. Y.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Yang, H.; Waterhouse, G. I. N.; Wang, X. K.; Ma, S. Q. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 2023, 14, 1106.

[6]

Yang, H.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Liu, Y. F.; Chen, Z. S.; Wang, X. K.; Waterhouse, G. I. N.; Ma, S. Q. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem., Int. Ed. 2023, 62, e202303129.

[7]

Liao, Y.; Lei, R. L.; Weng, X. F.; Yan, C.; Fu, J. X.; Wei, G. X.; Zhang, C.; Wang, M.; Wang, H. Q. Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. J. Hazard. Mater. 2023, 442, 130054.

[8]

Cai, Y. W.; Zhang, Y. F.; Lv, Z. M.; Zhang, S.; Gao, F. X.; Fang, M.; Kong, M. G.; Liu, P. S.; Tan, X. L.; Hu, B. W. et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B Environ. 2022, 310, 121343.

[9]

Wei, Y.; Zhang, Y. W.; Geng, W.; Su, H. R.; Long, M. C. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl. Catal. B Environ. 2019, 259, 118084.

[10]

Lin, S.; Wang, Q.; Huang, H. W.; Zhang, Y. H. Piezocatalytic and photocatalytic hydrogen peroxide evolution of sulfide solid solution nano-branches from pure water and air. Small 2022, 18, 2200914.

[11]

Lewis, R. J.; Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308.

[12]

Ge, L.; Xiao, J.; Liu, W. C.; Ren, G. L.; Zhou, C.; Liu, J. A.; Zou, J. J.; Yang, Z. X. A piezo-fenton system with rapid iron cycling and hydrogen peroxide self-supply driven by ultrasound. Chem. -Eur. J. 2022, 28, e202202494.

[13]

Wang, Y.; Wang, S. H.; Meng, Y. Z.; Liu, Z.; Li, D. J.; Bai, Y. Y.; Yuan, G. L.; Wang, Y. J.; Zhang, X. H.; Li, X. G. et al. Pyro-catalysis for tooth whitening via oral temperature fluctuation. Nat. Commun. 2022, 13, 4419.

[14]

Ma, Y. L.; Wang, B.; Zhong, Y. Z.; Gao, Z. Y.; Song, H. L.; Zeng, Y. J.; Wang, X. Y.; Huang, F.; Li, M. R.; Wang, M. Y. Bifunctional RbBiNb2O7/poly(tetrafluoroethylene) for high-efficiency piezocatalytic hydrogen and hydrogen peroxide production from pure water. Chem. Eng. J. 2022, 446, 136958.

[15]

Hickam, S.; Breier, J.; Cripe, Y.; Cole, E.; Burns, P. C. Effects of H2O2 concentration on formation of uranyl peroxide species probed by dissolution of uranium nitride and uranium dioxide. Inorg. Chem. 2019, 58, 5858–5864.

[16]

Ma, J. P.; Xiong, X.; Wu, D.; Wang, Y.; Ban, C. G.; Feng, Y. J.; Meng, J. Z.; Gao, X. S.; Dai, J. Y.; Han, G. et al. Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion. Adv. Mater. 2023, 35, 2300027.

[17]

Zhang, C. X.; Lei, D.; Xie, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

[18]

Lee, J. T.; Lin, M. C.; Wu, J. M. High-efficiency cycling piezo-degradation of organic pollutants over three liters using MoS2/carbon fiber piezocatalytic filter. Nano Energy 2022, 98, 107280.

[19]

Tian, Q.; Zeng, X. K.; Zhao, C.; Jing, L. Y.; Zhang, X. W.; Liu, J. Exceptional photocatalytic hydrogen peroxide production from sandwich-structured graphene interlayered phenolic resins nanosheets with mesoporous channels. Adv. Funct. Mater. 2023, 33, 2213173.

[20]

Wang, J.; Feng, T.; Chen, J. X.; He, J. H.; Fang, X. S. Flexible 2D Cu metal: Organic framework@MXene film electrode with excellent durability for highly selective electrocatalytic NH3 synthesis. Research 2022, 2022, 9837012.

[21]

Zhang, X. G.; Hao, C. C.; Ma, C.; Shen, Z. Z.; Guo, J. Z.; Sun, R. G. Studied on sonocatalytic degradation of Rhodamine B in aqueous solution. Ultrason. Sonochem. 2019, 58, 104691.

[22]

Chen, X.; Zhang, W. W.; Zhang, L. X.; Feng, L. P.; Zhang, C. X.; Jiang, J.; Yan, T. J.; Wang, H. Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broad-spectrum response. J. Mater. Chem. A 2020, 8, 18816–18825.

[23]

Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

[24]

Liu, B. Y.; Du, J. Y.; Ke, G. L.; Jia, B.; Huang, Y. J.; He, H. C.; Zhou, Y.; Zou, Z. G. Boosting O2 reduction and H2O dehydrogenation kinetics: Surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Adv. Funct. Mater. 2022, 32, 2111125.

[25]

Zhao, S.; Zhao, X. Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. J. Catal. 2018, 366, 98–106.

[26]

Sun, M. H.; Wang, X. G.; Li, Y.; Pan, H. H.; Murugananthan, M.; Han, Y. D.; Wu, J.; Zhang, M.; Zhang, Y. R.; Kang, Z. H. Bifunctional Pd-Ox center at the liquid–solid–gas triphase interface for H2O2 photosynthesis. ACS Catal. 2022, 12, 2138–2149.

[27]

Wang, K.; Zhang, M. Q.; Li, D. G.; Liu, L. H.; Shao, Z. P.; Li, X. Y.; Arandiyan, H.; Liu, S. M. Ternary BaCaZrTi perovskite oxide piezocatalysts dancing for efficient hydrogen peroxide generation. Nano Energy 2022, 98, 107251.

[28]

Liu, D. M.; Sun, X. R.; Tan, L. N.; Zhang, J. T.; Jin, C. C.; Wang, F. High-performance piezocatalytic hydrogen evolution by (Bi0.5Na0.5)TiO3 cubes decorated with cocatalysts. Ceram. Int. 2023, 49, 20343–20350.

[29]

Li, Y. K.; Li, L.; Liu, F. Y.; Wang, B.; Gao, F.; Liu, C.; Fang, J. Y.; Huang, F.; Lin, Z.; Wang, M. Y. Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. Nano Res. 2022, 15, 7986–7993.

[30]

Yu, K. F.; Jiang, P. Y.; Yuan, H. B.; He, R.; Zhu, W. K.; Wang, L. B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Appl. Catal. B Environ. 2021, 288, 119978.

[31]

Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I. FTIR and Raman spectroscopic study of sodium aluminophosphate and sodium aluminum-iron phosphate glasses containing uranium oxides. J. Non-Cryst. Solids 2016, 443, 192–198.

[32]

Britvina, A. S.; Titova, S. M.; Skripchenko, S. Y.; Yakovleva, O. V. Physico-chemical characteristics of uranium peroxide obtained from nitrate-sulfate pregnant solutions. AIP Conf. Proc. 2019, 2174, 020013.

[33]

Bliznyuk, V. N.; Conroy, N. A.; Xie, Y.; Podila, R.; Rao, A. M.; Powell, B. A. Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces. Phys. Chem. Chem. Phys. 2018, 20, 1752–1760.

[34]
Kushwaha, S.; Sreedhar, B.; Padmaja, P. XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U(VI) to U(V) and U(IV) on Borassus flabellifer-based adsorbents. Langmuir 2012, 28, 16038–16048.
[35]

Khavryuchenko, V. D.; Khavryuchenko, O. V.; Lisnyak, V. V. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials. J. Solid State Chem. 2007, 180, 702–712.

[36]

Spano, T. L.; Niedziela, J. L.; Shields, A. E.; McFarlane, J.; Zirakparvar, A.; Brubaker, Z.; Kapsimalis, R. J.; Miskowiec, A. Structural, spectroscopic, and kinetic insight into the heating rate dependence of studtite and metastudtite dehydration. J. Phys. Chem. C 2020, 124, 26699–26713.

[37]

Frost, R. L.; Čejka, J.; Ayoko, G. Raman spectroscopic study of the uranyl phosphate minerals phosphuranylite and yingjiangite. J. Raman Spectrosc. 2008, 39, 495–502.

[38]

Caculitan, N.; Siekhaus, W. The growth of epitaxial uranium oxide observed by micro-Raman spectroscopy. MRS Online Proc. Libr. 2011, 893, 8930507.

[39]
Lobeck, H. L.; Traustason, H.; Julien, P. A.; FitzPatrick, J. R.; Mana, S.; Szymanowski, J. E. S.; Burns, P. C. In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions. Dalton Trans. 2019, 48, 7755–7765.
[40]

Wylie, E. M.; Peruski, K. M.; Weidman, J. L.; Phillip, W. A.; Burns, P. C. Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution. ACS Appl. Mater. Interfaces 2014, 6, 473–479.

[41]

Clavier, N.; Du Fou De Kerdaniel, E.; Dacheux, N.; Le Coustumer, P.; Drot, R.; Ravaux, J.; Simoni, E. Behavior of thorium-uranium(IV) phosphate-diphosphate sintered samples during leaching tests. Part II. Saturation processes. J. Nucl. Mater. 2006, 349, 304–316.

[42]

Zheng, N. C.; Yin, L. Y.; Su, M. H.; Liu, Z. Q.; Tsang, D. C. W.; Chen, D. Y. Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI). Chem. Eng. J. 2020, 384, 123262.

[43]

Chen, L.; Wang, Y. Q.; Cao, X. H.; Zhang, Z. B.; Liu, Y. H. Effect of doping cation on the adsorption properties of hydroxyapatite to uranium. J. Solid State Chem. 2023, 317, 123687.

[44]

Zhu, W. C.; Wang, C. T.; Hui, W. H.; Huang, X.; Yang, C. M.; Liang, Y. C. Intrinsically morphological effect of perovskite BaTiO3 boosting piezocatalytic uranium extraction efficiency and mechanism investigation. J. Hazard. Mater. 2023, 455, 131578.

[45]

Cai, Y. W.; Fang, M.; Hu, B. W.; Wang, X. K. Efficient extraction of U(VI) ions from solutions. Nucl. Sci. Tech. 2023, 34, 2.

Nano Research
Pages 12772-12780
Cite this article:
Gao F, Wang Z, Fang M, et al. Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water. Nano Research, 2023, 16(11): 12772-12780. https://doi.org/10.1007/s12274-023-6159-z
Topics:

750

Views

16

Crossref

18

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 13 July 2023
Revised: 31 August 2023
Accepted: 04 September 2023
Published: 12 October 2023
© Tsinghua University Press 2023
Return