AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions

Jia Yu1,2Yida Yang1,2Yuliang Li2,3Changyan Cao1,2( )Weiguo Song1,2( )
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of organic solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

An overview about the advances and particular characteristics of graphdiyne-supported metal catalysts in thermocatalytic reactions is summarized.

Abstract

Supported metal catalysts are widely used in the modern chemical industry. The electronic interaction between supports and active components is of great significance for heterogeneous catalysis. Graphdiyne (GDY), a new type of carbon allotrope with sp-hybridized carbon atoms, π conjugate structure, and electron transmission capability, is a promising candidate as catalyst support. Recent years have witnessed the rapid progress of GDY-supported metal catalysts for different catalysis reactions. Considering that most processes in the current chemical industry are thermocatalytic reactions, we herein give an overview about the advances and particular characteristics of GDY-supported catalysts in these reactions. The geometric structure and electronic properties of GDY are first introduced. Then, the synthesis methods for GDY-supported metal catalysts and their applications in thermocatalytic reactions are discussed, in which the effect of electronic interaction on catalytic performance is highlighted. Finally, the current challenges and future directions of GDY-supported metal catalysts for thermocatalysis are proposed. It is expected that this review will enrich our understanding of the advances of GDY as a superior support for metal catalysts in thermocatalytic reactions.

Electronic Supplementary Material

Download File(s)
12274_2023_6166_MOESM1_ESM.pdf (645.1 KB)

References

[1]

George, S. M. Introduction: Heterogeneous catalysis. Chem. Rev. 1995, 95, 475–476.

[2]

Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916.

[3]

Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985.

[4]

van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[5]

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

[6]

Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

[7]

Campbell, C. T. Electronic perturbations. Nat. Chem. 2012, 4, 597–598.

[8]

Li, Y. Y.; Zhang, Y. S.; Qian, K.; Huang, W. X. Metal–support interactions in metal/oxide catalysts and oxide–metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287.

[9]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[10]

Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

[11]

Zheng, X. C.; Chen, S. A.; Li, J. Z.; Wu, H.; Zhang, C.; Zhang, D. Y.; Chen, X.; Gao, Y.; He, F.; Hui, L. et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research. ACS Nano 2023, 17, 14309–14346.

[12]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[13]

Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

[14]

Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Fang, Y.; Liu, Y. X.; Chen, X.; Zhang, D. Y.; Huang, B. L.; Li, Y. L. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. Natl. Sci. Rev. 2021, 8, nwaa213.

[15]

Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

[16]

Fang, L.; Cao, Z. X. Isoelectronic doping and external electric field regulate the gas-separation performance of graphdiyne. J. Phys. Chem. C 2020, 124, 2712–2720.

[17]

Li, J.; Gao, X.; Zhu, L.; Ghazzal, M. N.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy Environ. Sci. 2020, 13, 1326–1346.

[18]

Zhao, F. H.; Li, X. D.; He, J. J.; Wang, K.; Huang, C. H. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem. Eng. J. 2021, 413, 127486.

[19]

Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

[20]

Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem., Int. Ed. 2018, 57, 3968–3973.

[21]

Wang, F.; Zuo, Z. C.; Li, L.; Li, K.; He, F.; Jiang, Z. Q.; Li, Y. L. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Angew. Chem., Int. Ed. 2019, 58, 15010–15015.

[22]

Chen, X. Y.; Jiang, X.; Yang, N. J. Graphdiyne electrochemistry: Progress and perspectives. Small 2022, 18, 2201135.

[23]

Li, J.; Zhu, L.; Tung, C. H.; Wu, L. Z. Engineering graphdiyne for solar photocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202301384.

[24]

Fu, X. L.; Zhao, X.; Lu, T. B.; Yuan, M. J.; Wang, M. Graphdiyne-based single-atom catalysts with different coordination environments. Angew. Chem., Int. Ed. 2023, 62, e202219242.

[25]

Xue, Y. R.; Li, Y. L.; Zhang, J.; Liu, Z. F.; Zhao, Y. L. 2D graphdiyne materials: Challenges and opportunities in energy field. Sci. China Chem. 2018, 61, 765–786.

[26]

Du, Y. C.; Zhou, W. D.; Gao, J.; Pan, X. Y.; Li, Y. L. Fundament and application of graphdiyne in electrochemical energy. Acc. Chem. Res. 2020, 53, 459–469.

[27]

Khan, K.; Tareen, A. K.; Iqbal, M.; Shi, Z.; Zhang, H.; Guo, Z. Y. Novel emerging graphdiyne based two dimensional materials: Synthesis, properties, and renewable energy applications. Nano Today 2021, 39, 101207.

[28]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[29]

Huang, C. S.; Li, Y. L. Structure of 2D graphdiyne and its application in energy fields. Acta Phys. Chim. Sin. 2016, 32, 1314–1329.

[30]

Ma, D. W.; Li, T. X.; Wang, Q. G.; Yang, G.; He, C. Z.; Ma, B. Y.; Lu, Z. S. Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 2015, 95, 756–765.

[31]

He, J. J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C. Y.; Sun, L. Z. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT + U calculations. J. Phys. Chem. C 2012, 116, 26313–26321.

[32]

Zou, H. Y.; Arachchige, L. J.; Rong, W. F.; Tang, C.; Wang, R. H.; Tan, S.; Chen, H.; He, D. S.; Hu, J. H.; Hu, E. Y. et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonation. Adv. Funct. Mater. 2022, 32, 2200333.

[33]

Zou, H. Y.; Zhao, G.; Dai, H.; Dong, H. L.; Luo, W.; Wang, L.; Lu, Z. G.; Luo, Y.; Zhang, G. Z.; Duan, L. L. Electronic perturbation of copper single-atom CO2 reduction catalysts in a molecular way. Angew. Chem., Int. Ed. 2023, 62, e202217220.

[34]

Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.

[35]

Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

[36]

Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

[37]

Yin, X. P.; Tang, S. F.; Zhang, C.; Wang, H. J.; Si, R.; Lu, X. L.; Lu, T. B. Graphdiyne-based Pd single-atom catalyst for semihydrogenation of alkynes to alkenes with high selectivity and conversion under mild conditions. J. Mater. Chem. A 2020, 8, 20925–20930.

[38]

Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.

[39]

Liu, H.; Zou, H. Y.; Wang, D.; Wang, C. C.; Li, F.; Dai, H.; Song, T.; Wang, M.; Ji, Y. F.; Duan, L. L. Second sphere effects promote formic acid dehydrogenation by a single-atom gold catalyst supported on amino-substituted graphdiyne. Angew. Chem., Int. Ed. 2023, 62, e202216739.

[40]

Liu, H.; Zou, H. Y.; Wang, M.; Dong, H. L.; Wang, D.; Li, F.; Dai, H.; Song, T.; Wei, S. T.; Ji, Y. F. et al. Single-site heterogeneous organometallic Ir catalysts embedded on graphdiyne: Structural manipulation beyond the carbon support. Small 2022, 18, 2203442.

[41]

Li, R. R.; Yue, Y. X.; Chen, X. L.; Chang, R. Q.; Zhang, J. X.; Zhao, B.; Zhang, J. Y.; Cai, D.; Zhu, Y. H.; Han, D. M. et al. Graphdiyne anchoring to construct highly dense palladium trimer active sites for the selective hydrogenation of acetylene. Nano Res. 2023, 16, 6167–6177.

[42]

Yu, J.; Chen, W. M.; He, F.; Song, W. G.; Cao, C. Y. Electronic oxide–support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 2023, 145, 1803–1810.

[43]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[44]

Li, J.; Han, X.; Wang, D. M.; Zhu, L.; Ha-Thi, M. H.; Pino, T.; Arbiol, J.; Wu, L. Z.; Ghazzal, M. N. A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanoparticles. Angew. Chem., Int. Ed. 2022, 61, e202210242.

[45]

Li, Z. H.; Hu, R.; Ye, S.; Song, J.; Liu, L. W.; Qu, J. L.; Song, W. G.; Cao, C. Y. High-performance heterogeneous thermocatalysis caused by catalyst wettability regulation. Chem.—Eur. J. 2022, 28, e202104588.

[46]

Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680.

[47]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[48]

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

[49]

Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

[50]

Li, J. Q.; Zhong, L. X.; Tong, L. M.; Yu, Y.; Liu, Q.; Zhang, S. C.; Yin, C.; Qiao, L.; Li, S. Z.; Si, R. et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.

[51]

Oger, C.; Balas, L.; Durand, T.; Galano, J. M. Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (z)-olefins in polyfunctionalized bioactive molecules? Chem. Rev. 2013, 113, 1313–1350.

[52]

Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal–organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

[53]

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

[54]

Shen, H.; Li, Y. J.; Shi, Z. Q. A novel graphdiyne-based catalyst for effective hydrogenation reaction. ACS Appl. Mater. Interfaces 2019, 11, 2563–2570.

[55]

Yu, J.; Chen, W. M.; Li, K. X.; Zhang, C. H.; Li, M. Z.; He, F.; Jiang, L.; Li, Y. L.; Song, W. G.; Cao, C. Y. Graphdiyne nanospheres as a wettability and electron modifier for enhanced hydrogenation catalysis. Angew. Chem., Int. Ed. 2022, 61, e202207255.

[56]

Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.

[57]

Freund, H. J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.

[58]

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

[59]

Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

[60]

Yu, J.; Cao, C. Y.; Jin, H. Q.; Chen, W. M.; Shen, Q. K.; Li, P. P.; Zheng, L. R.; He, F.; Song, W. G.; Li, Y. L. Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. Natl. Sci. Rev. 2022, 9, nwac018.

[61]

Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

[62]

Shen, Q. K.; Li, P. P.; Chen, W. M.; Jin, H. Q.; Yu, J.; Zhu, L.; Yang, Z. C.; Zhao, R. Q.; Zheng, L. R.; Song, W. G. et al. Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Sci. China Mater. 2022, 65, 163–169.

[63]

Ball, M.; Wietschel, M. The future of hydrogen—Opportunities and challenges. Int. J. Hydrog. Energy 2009, 34, 615–627.

[64]

Li, Z. P.; Xu, Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc. Chem. Res. 2017, 50, 1449–1458.

[65]

Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. 3.0.CO;2-5">Angew. Chem., Int. Ed. 2001, 40, 2004–2021.

[66]

Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. 3.0.CO;2-4">Angew. Chem., Int. Ed. 2002, 41, 2596–2599.

[67]

Qian, K.; Duan, H. M.; Li, Y. Y.; Huang, W. X. Electronic oxide–metal strong interaction (EOMSI). Chem.—Eur. J. 2020, 26, 13538–13542.

Nano Research
Pages 2223-2233
Cite this article:
Yu J, Yang Y, Li Y, et al. Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions. Nano Research, 2024, 17(4): 2223-2233. https://doi.org/10.1007/s12274-023-6166-0
Topics:

817

Views

2

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 10 August 2023
Revised: 04 September 2023
Accepted: 04 September 2023
Published: 09 October 2023
© Tsinghua University Press 2023
Return