AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Batch fabrication of MoS2 devices directly on growth substrates by step engineering

Lu Li1,2Yalin Peng1,2Jinpeng Tian1,2Fanfan Wu1,2Xiang Guo1,2Na Li3Wei Yang1,2Dongxia Shi1,2Luojun Du1,2( )Guangyu Zhang1,2,3( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

We demonstrate the batch production of transfer-free MoS2 top-gate devices directly on sapphire growth substrates via step engineering. By introducing substrate steps on growth substrate sapphire, high-κ dielectric layers with superior quality and uniform can be directly deposited on the epitaxially grown monolayer MoS2.

Abstract

Monolayer molybdenum disulfide (MoS2) has emerged as one of the most promising channel materials for next-generation nanoelectronics and optoelectronics owing to its atomic thickness, dangling-bond-free flat surface, and high electrical quality. Currently, high-quality monolayer MoS2 wafers are primarily grown on sapphire substrates incompatible with conventional device fabrication, and thus transfer processes to a suitable substrate are typically required before the device can be processed. Here, we demonstrate the batch production of transfer-free MoS2 top-gate devices directly on sapphire growth substrates via step engineering. By introducing substrate steps on growth substrate sapphire, high-κ dielectric layers with superior quality and uniform can be directly deposited on the epitaxially grown monolayer MoS2. For the substrate with a maximum step density of 100 μm−1, the gate capacitance can reach ~ 1.87 μF∙cm−2, while the interface trap state density (Dit) can be as low as ~ 7.6 × 1010 cm−2∙eV−1. The direct deposition of high-quality dielectric layers on grown monolayer MoS2 enables the batch fabrication of top-gate devices devoid of transfer and thus excellent device yield of > 96%, holding great promise for large-scale two-dimensional (2D) integrated circuits.

Electronic Supplementary Material

Download File(s)
12274_2023_6180_MOESM1_ESM.pdf (5.1 MB)

References

[1]

Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature. 2021, 591, 43–53.

[2]

Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.

[3]

Tang, J.; Wang, Q. Q.; Tian, J. P.; Li, X. M.; Li, N.; Peng, Y. L.; Li, X. Z.; Zhao, Y. C.; He, C. L.; Wu, S. Y. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633.

[4]

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.

[5]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[6]

Li, M. F.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

[7]

Tian, J. P.; Wang, Q. Q.; Huang, X. D.; Tang, J.; Chu, Y. B.; Wang, S. P.; Shen, C.; Zhao, Y. C.; Li, N.; Liu, J. Y. et al. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett. 2023, 23, 2764–2770.

[8]

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

[9]

Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.

[10]

Wang, Q. Q.; Tang, J.; Li, X. M.; Tian, J. P.; Liang, J.; Li, N.; Ji, D. P.; Xian, L. D.; Guo, Y. T.; Li, L. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev. 2022, 9, nwac077.

[11]

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[12]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[13]

Xue, G. D.; Sui, X.; Yin, P.; Zhou, Z. Q.; Li, X. Z.; Cheng, Y.; Guo, Q. L.; Zhang, S.; Wen, Y.; Zuo, Y. G. et al. Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 2023, 68, 1514–1521.

[14]

Migliato Marega, G.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.

[15]

Huang, B. J.; Zheng, M. R.; Zhao, Y. S.; Wu, J.; Thong, J. T. L. Atomic layer deposition of high-quality Al2O3 thin films on MoS2 with water plasma treatment. ACS Appl. Mater. Interfaces 2019, 11, 35438–35443.

[16]

Qian, Q. K.; Zhang, Z. F.; Hua, M. Y.; Tang, G. F.; Lei, J. C.; Lan, F. F.; Xu, Y. K.; Yan, R. Y.; Chen, K. J. Enhanced dielectric deposition on single-layer MoS2 with low damage using remote N2 plasma treatment. Nanotechnology 2017, 28, 175202.

[17]

Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; Xiao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-κ oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.

[18]

Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-κ dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.

[19]

Azcatl, A.; McDonnell, S.; K C, S.; Peng, X.; Dong, H.; Qin, X. Y.; Addou, R.; Mordi, G. I.; Lu, N.; Kim, J. et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 2014, 104, 111601.

[20]

Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

[21]

Yuan, H.; Cheng, G. J.; Yu, S.; Hight Walker, A. R.; Richter, C. A.; Pan, M. H.; Li, Q. L. Field effects of current crowding in metal–MoS2 contacts. Appl. Phys. Lett. 2016, 108, 103505.

[22]

Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255–6261.

[23]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

[24]

Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75.

[25]

Shi, Y. Y.; Groven, B.; Serron, J.; Wu, X. Y.; Nalin Mehta, A.; Minj, A.; Sergeant, S.; Han, H.; Asselberghs, I.; Lin, D. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano 2021, 15, 9482–9494.

[26]

Zheng, P. M.; Wei, W. Y.; Liang, Z. H.; Qin, B.; Tian, J. P.; Wang, J. H.; Qiao, R. X.; Ren, Y. L.; Chen, J. T.; Huang, C. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 2023, 14, 592.

[27]
Fu, J. H.; Min, J. C.; Chang, C. K.; Tseng, C. C.; Wang, Q. X.; Sugisaki, H.; Li, C. Y.; Chang, Y. M.; Alnami, I.; Syong, W. R. et al. Oriented lateral growth of two-dimensional materials on C-plane sapphire. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-023-01445-9.
[28]

Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

[29]

Fang, N.; Nagashio, K. Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor. J. Phys. D Appl. Phys. 2018, 51, 065110.

[30]

Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.

[31]
Takenaka, M.; Ozawa, Y.; Han, J.; Takagi, S. Quantitative evaluation of energy distribution of interface trap density at MoS2 MOS interfaces by the Terman method. In 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016, pp 5.8.1–5.8.4.
Nano Research
Pages 12794-12799
Cite this article:
Li L, Peng Y, Tian J, et al. Batch fabrication of MoS2 devices directly on growth substrates by step engineering. Nano Research, 2023, 16(11): 12794-12799. https://doi.org/10.1007/s12274-023-6180-2
Topics:

921

Views

3

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 July 2023
Revised: 03 September 2023
Accepted: 07 September 2023
Published: 02 October 2023
© Tsinghua University Press 2023
Return