Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Monolayer molybdenum disulfide (MoS2) has emerged as one of the most promising channel materials for next-generation nanoelectronics and optoelectronics owing to its atomic thickness, dangling-bond-free flat surface, and high electrical quality. Currently, high-quality monolayer MoS2 wafers are primarily grown on sapphire substrates incompatible with conventional device fabrication, and thus transfer processes to a suitable substrate are typically required before the device can be processed. Here, we demonstrate the batch production of transfer-free MoS2 top-gate devices directly on sapphire growth substrates via step engineering. By introducing substrate steps on growth substrate sapphire, high-κ dielectric layers with superior quality and uniform can be directly deposited on the epitaxially grown monolayer MoS2. For the substrate with a maximum step density of 100 μm−1, the gate capacitance can reach ~ 1.87 μF∙cm−2, while the interface trap state density (Dit) can be as low as ~ 7.6 × 1010 cm−2∙eV−1. The direct deposition of high-quality dielectric layers on grown monolayer MoS2 enables the batch fabrication of top-gate devices devoid of transfer and thus excellent device yield of > 96%, holding great promise for large-scale two-dimensional (2D) integrated circuits.
Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature. 2021, 591, 43–53.
Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.
Tang, J.; Wang, Q. Q.; Tian, J. P.; Li, X. M.; Li, N.; Peng, Y. L.; Li, X. Z.; Zhao, Y. C.; He, C. L.; Wu, S. Y. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633.
Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.
Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.
Li, M. F.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.
Tian, J. P.; Wang, Q. Q.; Huang, X. D.; Tang, J.; Chu, Y. B.; Wang, S. P.; Shen, C.; Zhao, Y. C.; Li, N.; Liu, J. Y. et al. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett. 2023, 23, 2764–2770.
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.
Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.
Wang, Q. Q.; Tang, J.; Li, X. M.; Tian, J. P.; Liang, J.; Li, N.; Ji, D. P.; Xian, L. D.; Guo, Y. T.; Li, L. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev. 2022, 9, nwac077.
Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.
Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.
Xue, G. D.; Sui, X.; Yin, P.; Zhou, Z. Q.; Li, X. Z.; Cheng, Y.; Guo, Q. L.; Zhang, S.; Wen, Y.; Zuo, Y. G. et al. Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 2023, 68, 1514–1521.
Migliato Marega, G.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.
Huang, B. J.; Zheng, M. R.; Zhao, Y. S.; Wu, J.; Thong, J. T. L. Atomic layer deposition of high-quality Al2O3 thin films on MoS2 with water plasma treatment. ACS Appl. Mater. Interfaces 2019, 11, 35438–35443.
Qian, Q. K.; Zhang, Z. F.; Hua, M. Y.; Tang, G. F.; Lei, J. C.; Lan, F. F.; Xu, Y. K.; Yan, R. Y.; Chen, K. J. Enhanced dielectric deposition on single-layer MoS2 with low damage using remote N2 plasma treatment. Nanotechnology 2017, 28, 175202.
Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; Xiao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-κ oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.
Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-κ dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.
Azcatl, A.; McDonnell, S.; K C, S.; Peng, X.; Dong, H.; Qin, X. Y.; Addou, R.; Mordi, G. I.; Lu, N.; Kim, J. et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 2014, 104, 111601.
Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.
Yuan, H.; Cheng, G. J.; Yu, S.; Hight Walker, A. R.; Richter, C. A.; Pan, M. H.; Li, Q. L. Field effects of current crowding in metal–MoS2 contacts. Appl. Phys. Lett. 2016, 108, 103505.
Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255–6261.
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.
Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75.
Shi, Y. Y.; Groven, B.; Serron, J.; Wu, X. Y.; Nalin Mehta, A.; Minj, A.; Sergeant, S.; Han, H.; Asselberghs, I.; Lin, D. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano 2021, 15, 9482–9494.
Zheng, P. M.; Wei, W. Y.; Liang, Z. H.; Qin, B.; Tian, J. P.; Wang, J. H.; Qiao, R. X.; Ren, Y. L.; Chen, J. T.; Huang, C. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 2023, 14, 592.
Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.
Fang, N.; Nagashio, K. Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor. J. Phys. D Appl. Phys. 2018, 51, 065110.
Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.