Graphical Abstract

Monolayer molybdenum disulfide (MoS2) has emerged as one of the most promising channel materials for next-generation nanoelectronics and optoelectronics owing to its atomic thickness, dangling-bond-free flat surface, and high electrical quality. Currently, high-quality monolayer MoS2 wafers are primarily grown on sapphire substrates incompatible with conventional device fabrication, and thus transfer processes to a suitable substrate are typically required before the device can be processed. Here, we demonstrate the batch production of transfer-free MoS2 top-gate devices directly on sapphire growth substrates via step engineering. By introducing substrate steps on growth substrate sapphire, high-κ dielectric layers with superior quality and uniform can be directly deposited on the epitaxially grown monolayer MoS2. For the substrate with a maximum step density of 100 μm−1, the gate capacitance can reach ~ 1.87 μF∙cm−2, while the interface trap state density (Dit) can be as low as ~ 7.6 × 1010 cm−2∙eV−1. The direct deposition of high-quality dielectric layers on grown monolayer MoS2 enables the batch fabrication of top-gate devices devoid of transfer and thus excellent device yield of > 96%, holding great promise for large-scale two-dimensional (2D) integrated circuits.
Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature. 2021, 591, 43–53.
Wang, S. Y.; Liu, X. X.; Xu, M. S.; Liu, L. W.; Yang, D. R.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239.
Tang, J.; Wang, Q. Q.; Tian, J. P.; Li, X. M.; Li, N.; Peng, Y. L.; Li, X. Z.; Zhao, Y. C.; He, C. L.; Wu, S. Y. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633.
Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.
Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.
Li, M. F.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.
Tian, J. P.; Wang, Q. Q.; Huang, X. D.; Tang, J.; Chu, Y. B.; Wang, S. P.; Shen, C.; Zhao, Y. C.; Li, N.; Liu, J. Y. et al. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett. 2023, 23, 2764–2770.
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.
Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.
Wang, Q. Q.; Tang, J.; Li, X. M.; Tian, J. P.; Liang, J.; Li, N.; Ji, D. P.; Xian, L. D.; Guo, Y. T.; Li, L. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev. 2022, 9, nwac077.
Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.
Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.
Xue, G. D.; Sui, X.; Yin, P.; Zhou, Z. Q.; Li, X. Z.; Cheng, Y.; Guo, Q. L.; Zhang, S.; Wen, Y.; Zuo, Y. G. et al. Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 2023, 68, 1514–1521.
Migliato Marega, G.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.
Huang, B. J.; Zheng, M. R.; Zhao, Y. S.; Wu, J.; Thong, J. T. L. Atomic layer deposition of high-quality Al2O3 thin films on MoS2 with water plasma treatment. ACS Appl. Mater. Interfaces 2019, 11, 35438–35443.
Qian, Q. K.; Zhang, Z. F.; Hua, M. Y.; Tang, G. F.; Lei, J. C.; Lan, F. F.; Xu, Y. K.; Yan, R. Y.; Chen, K. J. Enhanced dielectric deposition on single-layer MoS2 with low damage using remote N2 plasma treatment. Nanotechnology 2017, 28, 175202.
Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; Xiao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-κ oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.
Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-κ dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.
Azcatl, A.; McDonnell, S.; K C, S.; Peng, X.; Dong, H.; Qin, X. Y.; Addou, R.; Mordi, G. I.; Lu, N.; Kim, J. et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 2014, 104, 111601.
Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.
Yuan, H.; Cheng, G. J.; Yu, S.; Hight Walker, A. R.; Richter, C. A.; Pan, M. H.; Li, Q. L. Field effects of current crowding in metal–MoS2 contacts. Appl. Phys. Lett. 2016, 108, 103505.
Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255–6261.
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.
Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75.
Shi, Y. Y.; Groven, B.; Serron, J.; Wu, X. Y.; Nalin Mehta, A.; Minj, A.; Sergeant, S.; Han, H.; Asselberghs, I.; Lin, D. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano 2021, 15, 9482–9494.
Zheng, P. M.; Wei, W. Y.; Liang, Z. H.; Qin, B.; Tian, J. P.; Wang, J. H.; Qiao, R. X.; Ren, Y. L.; Chen, J. T.; Huang, C. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 2023, 14, 592.
Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.
Fang, N.; Nagashio, K. Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor. J. Phys. D Appl. Phys. 2018, 51, 065110.
Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.