AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Coaxial boron nitride nanotubes as interfacial dielectric layers to lower interface trap density in carbon nanotube transistors

Keigo Otsuka1,§( )Taiki Sugihara1,§Taiki Inoue2Weijie Jia1Satoru Matsushita1Takanobu Saito1Minhyeok Lee1Takashi Taniguchi3Kenji Watanabe4Gregory Pitner5Ming-Yang Li6Tzu-Ang Chao6Rong Xiang1Shohei Chiashi1Shigeo Maruyama1( )
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
Corporate Research, Taiwan Semiconductor Manufacturing Company, San Jose, CA 95134, USA
Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 30078

§ Keigo Otsuka and Taiki Sugihara contributed equally to this work.

Show Author Information

Graphical Abstract

We demonstrate the superb switching of carbon nanotube transistors with boron nitride nanotubes as interfacial layers between channels and gate oxide owing to lowered interface trap density. The results highlight the advantages of one-dimensional van der Waals heterostructures in nanoelectronics.

Abstract

A semiconductor/dielectric interface is one of the dominant factors in device characteristics, and a variety of oxides with high dielectric constants and low interface trap densities have been used in carbon nanotube transistors. Given the crystal structure of nanotubes with no dangling bonds, there remains room to investigate unconventional dielectric materials. Here, we fabricate carbon nanotube transistors with boron nitride nanotubes as interfacial layers between channels and gate dielectrics, where a single semiconducting nanotube is used to focus on switching behaviors at the subthreshold regime. The subthreshold swing of 68 mV·dec−1 is obtained despite a 100-nm-thick SiO2 dielectric, corresponding to the effective interface trap density of 5.2 × 1011 cm−2·eV−1, one order of magnitude lower than those of carbon nanotube devices without boron nitride passivation. The interfacial layers also result in the mild suppression of threshold voltage variation and hysteresis. We achieve Ohmic contacts through the selective etching of boron nitride nanotubes with XeF2 gas, overcoming the trade-off imposed by wrapping the inner nanotubes. Negligible impacts of fluorinating carbon nanotubes on device performances are also confirmed as long as the etching is applied exclusively at source/drain regions. Our results represent an important step toward nanoelectronics that exploit the advantage of one-dimensional van der Waals heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2023_6241_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

[2]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[3]

Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1, e1500222.

[4]

Li, S. M.; Tian, M. C.; Gao, Q. G.; Wang, M. F.; Li, T. Y.; Hu, Q. L.; Li, X. F.; Wu, Y. Q. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 2019, 18, 1091–1097.

[5]

Cheng, Z. H.; Pang, C. S.; Wang, P. Q.; Le, S. T.; Wu, Y. Q.; Shahrjerdi, D.; Radu, I.; Lemme, M. C.; Peng, L. M.; Duan, X. F. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 2022, 5, 416–423.

[6]

Xu, L.; Yang, J.; Qiu, C. G.; Liu, S. Q.; Zhou, W. J.; Li, Q. H.; Shi, B. W.; Ma, J. C.; Yang, C.; Lu, J. et al. Can carbon nanotube transistors be scaled down to the sub-5 nm gate length. ACS Appl. Mater. Interfaces 2021, 13, 31957–31967.

[7]

Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

[8]

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

[9]

Xu, L.; Qiu, C. G.; Zhao, C. Y.; Zhang, Z. Y.; Peng, L. M. Insight into ballisticity of room-temperature carrier transport in carbon nanotube field-effect transistors. IEEE Trans. Electron Devices 2019, 66, 3535–3540.

[10]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

[11]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[12]

Jinkins, K. R.; Foradori, S. M.; Saraswat, V.; Jacobberger, R. M.; Dwyer, J. H.; Gopalan, P.; Berson, A.; Arnold, M. S. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Sci. Adv. 2021, 7, eabh0640.

[13]

Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.

[14]

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q. W.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

[15]

Wang, Z. X.; Xu, H. L.; Zhang, Z. Y.; Wang, S.; Ding, L.; Zeng, Q. S.; Yang, L. J.; Pei, T.; Liang, X. L.; Gao, M. et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett. 2010, 10, 2024–2030.

[16]

Ding, L.; Zhang, Z. Y.; Su, J.; Li, Q. Q.; Peng, L. M. Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors. Nanoscale 2014, 6, 11316–11321.

[17]

Franklin, A. D.; Bojarczuk, N. A.; Copel, M. Consistently low subthreshold swing in carbon nanotube transistors using lanthanum oxide. Appl. Phys. Lett. 2013, 102, 013108.

[18]

Xu, L.; Gao, N. F.; Zhang, Z. Y.; Peng, L. M. Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric. Appl. Phys. Lett. 2018, 113, 083105.

[19]
Pitner, G.; Zhang, Z.; Lin, Q.; Su, S. K.; Gilardi, C.; Kuo, C.; Kashyap, H.; Weiss, T.; Yu, Z.; Chao, T. A. et al. Sub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm gate length. In 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2020, pp 3.5.1–3.5.4.
[20]

Zhang, Z. C.; Passlack, M.; Pitner, G.; Kuo, C. H.; Ueda, S. T.; Huang, J.; Kashyap, H.; Wang, V.; Spiegelman, J.; Lam, K. T. et al. Sub-nanometer interfacial oxides on highly oriented pyrolytic graphite and carbon nanotubes enabled by lateral oxide growth. ACS Appl. Mater. Interfaces 2022, 14, 11873–11882.

[21]

Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385.

[22]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[23]

Vu, Q. A.; Fan, S. D.; Lee, S. H.; Joo, M. K.; Yu, W. J.; Lee, Y. H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001.

[24]

Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

[25]

Zou, X. M.; Huang, C. W.; Wang, L. F.; Yin, L. J.; Li, W. Q.; Wang, J. L.; Wu, B.; Liu, Y. Q.; Yao, Q.; Jiang, C. Z. et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv. Mater. 2016, 28, 2062–2069.

[26]

Jang, S. K.; Youn, J.; Song, Y. J.; Lee, S. Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 2016, 6, 30449.

[27]

Fang, N.; Otsuka, K.; Ishii, A.; Taniguchi, T.; Watanabe, K.; Nagashio, K.; Kato, Y. K. Hexagonal boron nitride as an ideal substrate for carbon nanotube photonics. ACS Photonics 2020, 7, 1773–1779.

[28]

Jeon, J. Y.; Ha, T. J. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films. Appl. Surf. Sci. 2017, 413, 118–122.

[29]

Lu, S. H.; Cardenas, J. A.; Worsley, R.; Williams, N. X.; Andrews, J. B.; Casiraghi, C.; Franklin, A. D. Flexible, print-in-place 1D-2D thin-film transistors using aerosol jet printing. ACS Nano 2019, 13, 11263–11272.

[30]

Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R. Vanishing hysteresis in carbon nanotube transistors embedded in boron nitride/polytetrafluoroethylene heterolayers. Phys. Status Solidi Rapid Res. Lett. 2020, 14, 2000193.

[31]

Xiang, R.; Inoue, T.; Zheng, Y. J.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D. M.; Gokhale, D.; Guo, J. et al. One-dimensional van der Waals heterostructures. Science 2020, 367, 537–542.

[32]

Matsushita, S.; Otsuka, K.; Sugihara, T.; Zhu, G. Y.; Kittipaisalsilpa, K.; Lee, M.; Xiang, R.; Chiashi, S.; Maruyama, S. Horizontal arrays of one-dimensional van der Waals heterostructures as transistor channels. ACS Appl. Mater. Interfaces 2023, 15, 10965–10973.

[33]

Feng, Y.; Li, H. N.; Inoue, T.; Chiashi, S.; Rotkin, S. V.; Xiang, R.; Maruyama, S. One-dimensional van der Waals heterojunction diode. ACS Nano 2021, 15, 5600–5609.

[34]

Kinoshita, K.; Moriya, R.; Onodera, M.; Wakafuji, Y.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 2019, 3, 22.

[35]

Son, J.; Kwon, J.; Kim, S.; Lv, Y. C.; Yu, J.; Lee, J. Y.; Ryu, H.; Watanabe, K.; Taniguchi, T.; Garrido-Menacho, R. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 2018, 9, 3988.

[36]

Zheng, Y. J.; Kumamoto, A.; Hisama, K.; Otsuka, K.; Wickerson, G.; Sato, Y.; Liu, M.; Inoue, T.; Chiashi, S.; Tang, D. M. et al. One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proc. Natl. Acad. Sci. USA 2021, 118, e2107295118.

[37]
Sze, S. M.; Li, Y. M.; Ng, K. K. Physics of Semiconductor Devices, 4th ed.; John Wiley & Sons: Hoboken, 2021.
[38]

Laturia, A.; Van De Put, M. L.; Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. npj 2D Mater. Appl. 2018, 2, 6.

[39]

Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

[40]

Park, R. S.; Shulaker, M. M.; Hills, G.; Suriyasena Liyanage, L.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599–4608.

[41]

Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

[42]

Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown. Nanoscale 2014, 6, 8831–8835.

[43]

Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.

[44]

Ha, T. J. Effect of gate-dielectrics on the electrical characteristics of solution-processed single-wall-carbon-nanotube thin-film transistors. Electron. Mater. Lett. 2017, 13, 287–291.

[45]

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

[46]

Kawasaki, S.; Komatsu, K.; Okino, F.; Touhara, H.; Kataura, H. Fluorination of open- and closed-end single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2004, 6, 1769.

[47]

Zhang, W.; Bonnet, P.; Dubois, M.; Ewels, C. P.; Guérin, K.; Petit, E.; Mevellec, J. Y.; Vidal, L.; Ivanov, D. A.; Hamwi, A. Comparative study of SWCNT fluorination by atomic and molecular fluorine. Chem. Mater. 2012, 24, 1744–1751.

[48]

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

[49]

Wakafuji, Y.; Moriya, R.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. 3D manipulation of 2D materials using microdome polymer. Nano Lett. 2020, 20, 2486–2492

Nano Research
Pages 12840-12848
Cite this article:
Otsuka K, Sugihara T, Inoue T, et al. Coaxial boron nitride nanotubes as interfacial dielectric layers to lower interface trap density in carbon nanotube transistors. Nano Research, 2023, 16(11): 12840-12848. https://doi.org/10.1007/s12274-023-6241-6
Topics:

636

Views

80

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 July 2023
Revised: 20 September 2023
Accepted: 28 September 2023
Published: 11 November 2023
© The Author(s) 2023

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return