A semiconductor/dielectric interface is one of the dominant factors in device characteristics, and a variety of oxides with high dielectric constants and low interface trap densities have been used in carbon nanotube transistors. Given the crystal structure of nanotubes with no dangling bonds, there remains room to investigate unconventional dielectric materials. Here, we fabricate carbon nanotube transistors with boron nitride nanotubes as interfacial layers between channels and gate dielectrics, where a single semiconducting nanotube is used to focus on switching behaviors at the subthreshold regime. The subthreshold swing of 68 mV·dec−1 is obtained despite a 100-nm-thick SiO2 dielectric, corresponding to the effective interface trap density of 5.2 × 1011 cm−2·eV−1, one order of magnitude lower than those of carbon nanotube devices without boron nitride passivation. The interfacial layers also result in the mild suppression of threshold voltage variation and hysteresis. We achieve Ohmic contacts through the selective etching of boron nitride nanotubes with XeF2 gas, overcoming the trade-off imposed by wrapping the inner nanotubes. Negligible impacts of fluorinating carbon nanotubes on device performances are also confirmed as long as the etching is applied exclusively at source/drain regions. Our results represent an important step toward nanoelectronics that exploit the advantage of one-dimensional van der Waals heterostructures.
- Article type
- Year
- Co-author
Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal electrical properties, even a small portion of metallic (m-) counterparts causes excessive leakage in field-effect transistors (FETs). To fully exploit the benefits of s-SWNTs for use in large-scale systems, it is necessary to completely eliminate m-SWNTs from as-grown SWNT arrays and thereby obtain purely semiconducting large-area arrays, wherein numerous FETs can be flexibly built. In this study, we performed electrical burning of m-SWNTs assisted by water vapor and polymer coating to eliminate m-SWNTs over a long length for the scalable fabrication of transistors from the remaining s-SWNT arrays. During the electrical-breakdown process, the combination of water vapor and the polymer coating significantly enhanced the burning of the SWNTs, resulting in a self-sustained reaction along the nanotube axis. We found that m-SWNT segments partially remaining on the anode side resulted from one-way burning from the initial breakdown position, where Joule-heating-induced oxidation first occurred. The s-SWNT-enriched arrays obtained were used to fabricate multiple FETs with a high on-off current ratio. The results indicate the advantages of this approach over conventional electrical breakdown for the large-scale purification of s-SWNTs.
Field-effect transistors (FETs) have been fabricated using as-grown single-walled carbon nanotubes (SWNTs) for the channel as well as both source and drain electrodes. The underlying Si substrate was employed as the back-gate electrode. Fabrication consisted of patterned catalyst deposition by surface modification followed by dip-coating and synthesis of SWNTs by alcohol chemical vapor deposition (CVD). The electrodes and channel were grown simultaneously in one CVD process. The resulting FETs exhibited excellent performance, with an ION/IOFF ratio of 106 and a maximum ON-state current (ION) exceeding 13 μA. The large ION is attributed to SWNT bundles connecting the SWNT channel with the SWNT electrodes. Bundling creates a large contact area, which results in a small contact resistance despite the presence of Schottky barriers at metallic–semiconducting interfaces. The approach described here demonstrates a significant step toward the realization of metal-free electronics.
We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, layer positions, and optical absorbance spectra of SWNT separations using the bile salt sodium deoxycholate (DOC) and the anionic salt sodium dodecyl sulfate (SDS), we clarify the roles and interactions of these two surfactants in yielding different DGU outcomes. The separation mechanism described here can also help in designing new DGU experiments by qualitatively predicting outcomes of different starting recipes, improving the efficacy of DGU and simplifying post-DGU fractionation.