AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries

Xiaowei He1,§Tianshuai Wang1,2,§( )Lidong Tian3Qiuyu Zhang1( )
School of Chemistry and Chemical Engineering, Xi’an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072, China
Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, China
College of Materials Science and Engineering, Xi’an University Science and Technology, Xi’an 710054, China

§ Xiaowei He and Tianshuai Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The high-quality Cu1.94S/ZnS heterostructure material has been successfully prepared by synergistically combining the green chemical purpose of reusing waste metal with a high-efficiency and low-cost process. The novel heterostructure material shows significantly improved reversible capacity and excellent long-term cycle stability, thanks to the synergistic coupling effect at the interface and the promoted complete alloying reaction of ZnS.

Abstract

Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries (SIBs). However, constructing high-quality heterostructure anode materials through green and environmentally friendly methods remains a challenge. Herein, we have proposed a simple one-step method by recycling the electronic waste metal materials to synthesize the Cu1.94S/ZnS heterostructure materials. Combined with the experimental analysis and first principle calculations, we find that the synergistic effect of different components in heterostructure structures can significantly enhance the reversible capacity and rate performance of anode materials. Based on the constructed Cu1.94S/ZnS anode, we obtain a superior reversible capacity of 440 mAh·g−1 at 100 mA·g−1 and 335 mAh·g−1 after 3000 cycles at 2000 mA·g−1. Our work sheds new light on designing high-rate and capacity anodes for SIBs through the greenness synthesis method.

Electronic Supplementary Material

Download File(s)
6249_ESM.pdf (5.3 MB)

References

[1]

Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

[2]

Yang, C.; Xin, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.

[3]

Chen, B.; Zhong, X. W.; Zhou, G. M.; Zhao, N. Q.; Cheng, H. M. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 2022, 34, 2105812.

[4]

Konz, Z. M.; McCloskey, B. D. Lithium quantified, dead or alive. Nat. Energy 2022, 7, 1005–1006.

[5]

Bauer, C.; Burkhardt, S.; Dasgupta, N. P.; Ellingsen, L. A. W.; Gaines, L. L.; Hao, H.; Hischier, R.; Hu, L. B.; Huang, Y. H.; Janek, J. et al. Charging sustainable batteries. Nat. Sustain. 2022, 5, 176–178.

[6]

Goikolea, E.; Palomares, V.; Wang, S. J.; de Larramendi, I. R.; Guo, X.; Wang, G. X.; Rojo, T. Na-ion batteries-approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.

[7]

Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.;.

[8]

Wang, C. P.; Yan, J. T.; Li, T. Y.; Lv, Z. Q.; Hou, X.; Tang, Y. F.; Zhang, H. M.; Zheng, Q.; Li, X. F. A coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew. Chem. 2021, 133, 25217–25223.

[9]

Xu, Y. B.; Wang, K.; Yao, Z. P.; Kang, J.; Lam, D.; Yang, D.; Ai, W.; Wolverton, C.; Hersam, M. C.; Huang, Y. et al. In situ, atomic-resolution observation of lithiation and sodiation of WS2 nanoflakes: Implications for lithium-ion and sodium-ion batteries. Small 2021, 17, 2100637

[10]

Cheng, Z. W.; Zhao, B.; Guo, Y. J.; Yu, L. Z.; Yuan, B. H.; Hua, W. B.; Yin, Y. X.; Xu, S. L.; Xiao, B.; Han, X. G. et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103461.

[11]

Tian, Z. H.; Zhang, Y.; Zhu, J. X.; Li, Q. Y.; Liu, T. X.; Antonietti, M. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: A thermodynamic view. Adv. Energy Mater. 2021, 11, 2102489.

[12]

Shao, W. L.; Shi, H. D.; Jian, X. G.; Wu, Z. S.; Hu, F. Y. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200009.

[13]

Lim, Y. V.; Li, X. L.; Yang, H. Y. Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2006761.

[14]

Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167.

[15]

Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

[16]

Pan, Q. G.; Tong, Z. P.; Su, Y. Q.; Qin, S.; Tang, Y. B. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103912.

[17]

Yang, F.; Wang, S. G.; Guan, J. D.; Shao, L. Y.; Shi, X. Y.; Cai, J. J.; Sun, Z. P. Hierarchical MoS2-NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries. J. Mater. Chem. A 2021, 9, 27072–27083.

[18]

Zong, J. G.; Wang, F.; Nie, C.; Zhao, M. S.; Yang, S. Cobalt and oxygen double doping induced C@MoS2-CoS2-O@C nanocomposites with an improved electronic structure and increased active sites as a high-performance anode for sodium-based dual-ion batteries. J. Mater. Chem. A 2022, 10, 10651–10661.

[19]

Kandula, S.; Youn, B. S.; Cho, J.; Lim, H. K.; Son, J. G. FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 2022, 439, 135678.

[20]

Xie, H. N.; Chen, B.; Liu, C. Y.; Wu, G. X.; Sui, S.; Liu, E. Z.; Zhou, G. M.; He, C. N.; Hu, W. B.; Zhao, N. Q. Engineering the interfacial doping of 2D heterostructures with good bidirectional reaction kinetics for durably reversible sodium-ion batteries. Energy Storage Mater. 2023, 60, 102830.

[21]

Huang, P. F.; Ying, H. J.; Zhang, S. L.; Zhang, Z.; Han, W. Q. In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via Lewis acidic etching route for efficient sodium storage. J. Mater. Chem. A 2022, 10, 22135–22144.

[22]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[23]

Miao, Y.; Xiao, Y.; Hu, S. L.; Chen, S. M. Chalcogenides metal-based heterostructure anode materials toward Na+-storage application. Nano Res. 2023, 16, 2347–2365.

[24]

Wang, S. Y.; Peng, B.; Lu, J.; Jie, Y. L.; Li, X. P.; Pan, Y. X.; Han, Y. H.; Cao, R. G.; Xu, D. S.; Jiao, S. H. Recent progress in rechargeable sodium metal batteries: A review. Chem.—Eur. J. 2023, 29, e202202380.

[25]

Chu, C. X.; Li, R.; Cai, F. P.; Bai, Z. C.; Wang, Y. X.; Xu, X.; Wang, N. N.; Yang, J.; Dou, S. X. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340.

[26]

Fang, Y. J.; Luan, D. Y.; Lou, X. W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.

[27]

Du, P.; Cao, L.; Zhang, B.; Wang, C. H.; Xiao, Z. M.; Zhang, J. F.; Wang, D.; Ou, X. Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 2021, 151, 111640.

[28]

Fu, H.; Wen, Q.; Li, P. Y.; Wang, Z. Y.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zhang, X. H.; Zheng, J. C. Recent advances on heterojunction-type anode materials for lithium/sodium-ion batteries. Small Methods 2022, 6, 2201025.

[29]

Li, Y.; Wu, F.; Qian, J.; Zhang, M. H.; Yuan, Y. X.; Bai, Y.; Wu, C. Metal chalcogenides with heterostructures for high-performance rechargeable batteries. Small Sci. 2021, 1, 2100012.

[30]

Yu, B.; Ji, Y. X.; Hu, X.; Liu, Y. J.; Yuan, J.; Lei, S.; Zhong, G. B.; Weng, Z. X.; Zhan, H. B.; Wen, Z. H. Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed sodium-ion batteries. Chem. Eng. J. 2022, 430, 132993.

[31]

Zhao, W. X.; Gao, L. X.; Yue, L. C.; Wang, X. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J. Mater. Chem. A 2021, 9, 6402–6412.

[32]

Wang, Q. P.; Wang, G. H.; Wang, J.; Li, J. M.; Wang, K.; Zhou, S.; Su, Y. R. In situ hydrothermal synthesis of ZnS/TiO2 nanofibers S-scheme heterojunction for enhanced photocatalytic H2 evolution. Adv. Sustain. Syst. 2023, 7, 2200027.

[33]

Nadargi, D. Y.; Tamboli, M. S.; Patil, S. S.; Dateer, R. B.; Mulla, I. S.; Choi, H.; Suryavanshi, S. S. Microwave-epoxide-assisted hydrothermal synthesis of the CuO/ZnO heterojunction: A highly versatile route to develop H2S gas sensors. ACS Omega 2020, 5, 8587–8595.

[34]

Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734.

[35]

Sengupta, S.; Aggarwal, R.; Raula, M. A review on chemical bath deposition of metal chalcogenide thin films for heterojunction solar cells. J. Mater. Res. 2023, 38, 142–153.

[36]

Yang, J.; Wu, X. H.; Mei, Z. H.; Zhou, S.; Su, Y. R.; Wang, G. H. CVD assisted synthesis of macro/mesoporous TiO2/g-C3N4S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Adv. Sustain. Syst. 2022, 6, 2200056.

[37]

Yang, X. X.; Sun, X.; Gan, L. Y.; Sun, L. N.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. A CoO x /FeO x heterojunction on carbon nanotubes prepared by plasma-enhanced atomic layer deposition for the highly efficient electrocatalysis of oxygen evolution reactions. J. Mater. Chem. A 2020, 8, 15140–15147.

[38]

Han, S. K.; Gu, C.; Zhao, S. T.; Xu, S.; Gong, M.; Li, Z. Y.; Yu, S. H. Precursor triggering synthesis of self-coupled sulfide polymorphs with enhanced photoelectrochemical properties. J. Am. Chem. Soc. 2016, 138, 12913–12919.

[39]

Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am. Chem. Soc. 2003, 125, 16050–16057.

[40]

Li, F.; Kong, T.; Bi, W. T.; Li, D. C.; Li, Z.; Huang, X. T. Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method. Appl. Surf. Sci. 2009, 255, 6285–6289.

[41]

Wang, S. Y.; Wang, W.; Lu, Z. H. Asynchronous-pulse ultrasonic spray pyrolysis deposition of Cu x S ( x = 1, 2) thin films. Mater. Sci. Eng. B 2003, 103, 184–188.

[42]

Nilsen, W. G. Raman spectrum of cubic ZnS. Phys. Rev. 1969, 182, 838–850.

[43]

Luo, Y. Y.; Duan, G. T.; Li, G. H. Resonant Raman scattering and surface phonon modes of hollow ZnS microspheres. Appl. Phys. Lett. 2007, 90, 201911.

[44]

Li, H. H.; Zhang, H.; Diemant, T.; Jürgen Behm, R.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium-ion batteries. Small Struct. 2021, 2, 2100035.

[45]

Sun, B.; Zhang, Q.; Zhang, C. Z.; Xu, W. L.; Wang, J. P.; Yuan, G. M.; Lv, W.; Li, X. K.; Yang, N. J. A passionfruit-like carbon-confined Cu2ZnSnS4 anode for ultralong-life sodium storage. Adv. Energy Mater. 2021, 11, 2100082.

[46]

Liu, X. J.; Hao, Y. C.; Shu, J.; Sari, H. M. K.; Lin, L. X.; Kou, H. R.; Li, J. W.; Liu, W.; Yan, B.; Li, D. J. et al. Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 2019, 57, 414–423.

[47]

Yu, D. X.; Li, M. L.; Yu, T.; Wang, C. Z.; Zeng, Y.; Hu, X. D.; Chen, G.; Yang, G. C.; Du, F. Nanotube-assembled pine-needle-like CuS as an effective energy booster for sodium-ion storage. J. Mater. Chem. A 2019, 7, 10619–10628.

[48]

Zhao, W. X.; Wang, X. D.; Ma, X. Q.; Yue, L. C.; Liu, Q.; Luo, Y. L.; Liu, Y.; Asiri, A. M.; Sun, X. P. In situ tailoring bimetallic-organic framework-derived yolk–shell NiS2/CuS hollow microspheres: An extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. J. Mater. Chem. A 2021, 9, 15807–15819.

[49]

Cai, J. Y.; Reinhart, B.; Eng, P.; Liu, Y. Q.; Sun, C. J.; Zhou, H.; Ren, Y.; Meng, X. B. Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon 2020, 170, 430–438.

[50]

Yang, Z. G.; Wu, Z. G.; Hua, W. B.; Xiao, Y.; Wang, G. K.; Liu, Y. X.; Wu, C. J.; Li, Y. C.; Zhong, B. H.; Xiang, W. et al. Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 2020, 7, 1903279.

[51]

Zhai, X. G.; Zuo, Z. C.; Xiong, Z. C.; Pan, H. H.; Gao, X. Y.; Li, Y. L. Large-scale CuS nanotube arrays@ graphdiyne for high-performance sodium ion battery. 2D Mater. 2022, 9, 025024.

[52]

Yang, Z. G.; Wu, Z. G.; Liu, J.; Liu, Y. X.; Gao, S. Y.; Wang, J. A.; Xiao, Y.; Zhong, Y. J.; Zhong, B. H.; Guo, X. D. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. J. Mater. Chem. A 2020, 8, 8049–8057.

[53]

Li, H. H.; Zhang, H.; Zarrabeitia, M.; Liang, H. P.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S. Metal-organic framework derived copper chalcogenides-carbon composites as high-rate and stable storage materials for Na ions. Adv. Sustain. Syst. 2022, 6, 2200109.

[54]

Nie, X.; Kong, X. Z.; Selvakumaran, D.; Lou, L. Z.; Shi, J. R.; Zhu, T.; Liang, S. Q.; Cao, G. Z.; Pan, A. Q. Three-dimensional carbon-coated treelike Ni3S2 superstructures on a nickel foam as binder-free bifunctional electrodes. ACS Appl. Mater. Interfaces 2018, 10, 36018–36027.

[55]

Li, W. Y.; Zhang, B. J.; Lin, R. J.; Ho-Kimura, S.; He, G. J.; Zhou, X. Y.; Hu, J. Q.; Parkin, I. P. A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 2018, 28, 1705937.

[56]

Hsieh, Y. Y.; Tuan, H. Y. Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Storage Mater. 2022, 51, 789–805.

[57]

Xue, S.; Shang, J.; Pu, X. H.; Cheng, H.; Zhang, L. J.; Wang, C. C.; Lee, C. S.; Tang, Y. B. Dual anionic doping strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage. Energy Storage Mater. 2023, 55, 33–41.

[58]
Cu, Q.; Shang, C. Q.; Zhou, G. F.; Wang, X. Freestanding MoSe2 nanoflowers for superior Li/Na storage properties. Tungsten, in press, DOI: 10.1007/s42864-022-00167-0.
[59]

Wang, Y. Y.; Kang, W. P.; Pu, X. J.; Liang, Y. C.; Xu, B.; Lu, X. Q.; Sun, D. F.; Cao, Y. L. Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy 2022, 93, 106897.

[60]

Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

[61]

Moellmann, J.; Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621.

[62]

Wisesa, P.; McGill, K. A.; Mueller, T. Efficient generation of generalized monkhorst-pack grids through the use of informatics. Phys. Rev. B 2016, 93, 155109.

Nano Research
Pages 4006-4015
Cite this article:
He X, Wang T, Tian L, et al. Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries. Nano Research, 2024, 17(5): 4006-4015. https://doi.org/10.1007/s12274-023-6249-y
Topics:

769

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 14 August 2023
Revised: 30 September 2023
Accepted: 07 October 2023
Published: 25 November 2023
© Tsinghua University Press 2023
Return