AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of novel P-Si/TiO2/HfO2/MoS2/Pt hetero-photocathode for enhanced photoelectrochemical water splitting

Jiaru Li1Jiayu Bai1Songjie Hu1Wenyu Yuan3Yuyu Bu2( )Xiaohui Guo1( )
Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, The College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
Key Lab of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China
Key Lab of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
Show Author Information

Graphical Abstract

A kind of advanced p-Si/TiO2/HfO2/MoS2/Pt photocathode system is firstly fabricated through a stepwise deposition method. The introduction of an ultra-thin HfO2 film not only effectively mitigates the corrosion of the silicon substrate, but also exhibits enhanced carrier transfer and suppressed carrier recombination.

Abstract

Photoelectrochemical devices have been developed to enable the conversion of solar energy. However, their commercial potential is restricted by the limited stability of the materials employed. To enhance the stability of photocathode and its solar water splitting performance, a P-Si/TiO2/HfO2/MoS2/Pt composite photocathode is developed in this work. The novel TiO2/HfO2/MoS2 serial nanostructure provides excellent stability of the photocathode, and optimizes the interface energy barrier to further facilitate the transfer process of photogenerated carriers within the photocathode. The best P-Si/TiO2/HfO2/MoS2/Pt photocathode demonstrates an initial potential of 0.5 V (vs. RHE) and a photocurrent density of −29 mA/cm2 at 0 V (vs. RHE). Through intensity modulated photocurrent spectroscopy and photoluminescence test, it is known that the enhanced water splitting performance is attributed to the optimized carrier transfer property. These findings provide a feasible strategy for the stability and photon quantum efficiency enhancement of silicon-based photocathode devices.

Electronic Supplementary Material

Download File(s)
12274_2023_6299_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J. W.; Lee, J. S. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971.

[2]

Zhao, Y. B.; Niu, Z. J.; Zhao, J. W.; Xue, L.; Fu, X. Z.; Long, J. L. Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy Rev. 2023, 6, 14.

[3]

Joy, J.; Mathew, J.; George, S. C. Nanomaterials for photoelectrochemical water splitting-review. Int. J. Hydrogen Energy 2018, 43, 4804–4817.

[4]

Sivula, K.; Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater 2016, 1, 15010.

[5]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[6]

Luo, Z. B.; Wang, T.; Gong, J. L. Single-crystal silicon-based electrodes for unbiased solar water splitting: Current status and prospects. Chem. Soc. Rev. 2019, 48, 2158–2181.

[7]

Cheng, C. H.; Zhang, W. Y.; Chen, X. M.; Peng, S. Q.; Li, Y. X. Strategies for improving photoelectrochemical water splitting performance of Si-based electrodes. Energy Sci. Eng. 2022, 10, 1526–1543.

[8]

Zhao, J. H.; Gill, T. M.; Zheng, X. L. Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel. Nano Res. 2018, 11, 3499–3508.

[9]

Zhang, H. Y.; She, G. W.; Xu, J.; Li, S. Y.; Liu, Y.; Luo, J.; Shi, W. S. Electrochemical surface reconstructed Pt x ( x =2,3)Si/PtSi/p-Si photocathodes for achieving high efficiency in photoelectrochemical H2 generation. J. Mater. Chem. A 2022, 10, 4952–4959.

[10]

Li, L. J.; Liu, T. T.; Zhou, Z. Y.; Guo, P. J.; Li, X. F.; Wu, S. L. Photo-assisted decoration of Ag-Pt nanoparticles on Si photocathodes for reducing overpotential toward enhanced photoelectrochemical water splitting. Sci. China Mater. 2022, 65, 3033–3042.

[11]

Li, S. J.; Lin, H. W.; Luo, S. Q.; Wang, Q.; Ye, J. H. Surface/interface engineering of Si-based photocathodes for efficient hydrogen evolution. ACS Photonics 2022, 9, 3786–3806.

[12]

Feng, J.; Gong, M.; Kenney, M. J.; Wu, J. Z.; Zhang, B.; Li, Y. G.; Dai, H. J. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res. 2015, 8, 1577–1583.

[13]

Wang, K.; Fan, N. B.; Xu, B.; Wei, Z. H.; Chen, C.; Xie, H.; Ye, W. X.; Peng, Y.; Shen, M. R.; Fan, R. L. Steering the pathway of plasmon-enhanced photoelectrochemical CO2 reduction by bridging Si and Au nanoparticles through a TiO2 interlayer. Small 2022, 18, 2201882.

[14]

Fan, R. L.; Mao, J.; Yin, Z. H.; Jie, J. S.; Dong, W.; Fang, L.; Zheng, F. G.; Shen, M. R. Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 6123–6129.

[15]

Choi, M. J.; Jung, J. Y.; Park, M. J.; Song, J. W.; Lee, J. H.; Bang, J. H. Long-term durable silicon photocathode protected by a thin Al2O3/SiO x layer for photoelectrochemical hydrogen evolution. J. Mater. Chem. A 2014, 2, 2928–2933.

[16]

Mitta, S. B.; Murahari, P.; Nandanapalli, K. R.; Mudusu, D.; Karuppannan, R.; Whang, D. Si/ZnO heterostructures for efficient diode and water-splitting applications. Int. J. Hydrog. Energy 2018, 43, 16015–16023.

[17]

Huang, D. W.; Wang, K.; Yu, L.; Nguyen, T. H.; Ikeda, S.; Jiang, F. Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. ACS Energy Lett. 2018, 3, 1875–1881.

[18]

Ji, L.; McDaniel, M. D.; Wang, S. J.; Posadas, A. B.; Li, X. H.; Huang, H. Y.; Lee, J. C.; Demkov, A. A.; Bard, A. J.; Ekerdt, J. G. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 2015, 10, 84–90.

[19]
Sun, X.; Wang, M.; Geng, Q.; Chen, S. L.; Lv, X. J.; Ding, X. L.; Li, M. C. Nanostructured AlFeO3 thin films as a novel photoanode for photoelectrochemical water splitting. Nano Res., in press, https://doi.org/10.1007/s12274-023-5896-3.
[20]

Yoon, J. W.; Kim, J. H.; Jo, Y. M.; Lee, J. H. Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting. Nano Res. 2022, 15, 8502–8509.

[21]

Pan, J. B.; Shen, S.; Chen, L.; Au, C. T.; Yin, S. F. Core–shell photoanodes for photoelectrochemical water oxidation. Adv. Funct. Mater. 2021, 31, 2104269.

[22]

Wang, X. H.; Wang, M. R.; Liu, G. J.; Zhang, Y. M.; Han, G. T.; Vomiero, A.; Zhao, H. G. Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation. Nano Energy 2021, 86, 106122.

[23]

Wang, X. H.; Zhang, Y. M.; Li, J. Z.; Liu, G. J.; Gao, M. Z.; Ren, S. H.; Liu, B. X.; Zhang, L. X.; Han, G. T.; Yu, J. Y. et al. Platinum cluster/carbon quantum dots derived graphene heterostructured carbon nanofibers for efficient and durable solar-driven electrochemical hydrogen evolution. Small Methods 2022, 6, 2101470.

[24]

Choi, S.; Lee, S. A.; Yang, H.; Lee, T. H.; Kim, C.; Lee, C. W.; Shin, H.; Jang, H. W. Stabilization of NiFe layered double hydroxides on n-Si by an activated TiO2 interlayer for efficient solar water oxidation. ACS Appl. Energy Mater. 2020, 3, 12298–12307.

[25]

Wang, S. J.; Feng, S. J.; Liu, B.; Gong, Z. C.; Wang, T.; Gong, J. L. An integrated n-Si/BiVO4 photoelectrode with an interfacial bi-layer for unassisted solar water splitting. Chem. Sci. 2023, 14, 2192–2199.

[26]

Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99–105.

[27]

Abliz, A.; Wan, D.; Chen, J. Y.; Xu, L.; He, J. W.; Yang, Y. B.; Duan, H. M.; Liu, C. S.; Jiang, C. Z.; Chen, H. P. et al. Enhanced reliability of In-Ga-ZnO thin-film transistors through design of dual passivation layers. IEEE Trans. Electron. Dev. 2018, 65, 2844–2849.

[28]

Zhu, L.; Wang, X. H.; Ren, X. R.; Zhang, P.; Akhtar, F.; Feng, P. Z. Preparation, properties and high-temperature oxidation resistance of MoSi2-HfO2 composite coating to protect niobium using spent MoSi2-based materials. Ceram. Int. 2021, 47, 27091–27099.

[29]

Staišiūnas, L.; Kalinaūskas, P.; Juzeliunas, E.; Grigucevičienė, A.; Leinartas, K.; Niaura, G.; Stanionytė, S.; Selskis, A. Silicon passivation by ultrathin hafnium oxide layer for photoelectrochemical applications. Front. Chem. 2022, 10, 859023.

[30]

Cui, J.; Wan, Y. M.; Cui, Y. F.; Chen, Y. F.; Verlinden, P.; Cuevas, A. Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide. Appl. Phys. Lett. 2017, 110, 021602.

[31]

Xing, Z.; Ren, F.; Wu, H. Y.; Wu, L.; Wang, X. N.; Wang, J. L.; Wan, D.; Zhang, G. Z.; Jiang, C. Z. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers. Sci. Rep. 2017, 7, 43901.

[32]

Jung, J. Y.; Kim, D. W.; Kim, D. H.; Park, T. J.; Wehrspohn, R. B.; Lee, J. H. Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfO x /SiO x bi-layer protected Si photocathodes. Sci. Rep. 2019, 9, 9132.

[33]

Li, C. C.; Wang, T.; Liu, B.; Chen, M. X.; Li, A.; Zhang, G.; Du, M. Y.; Wang, H.; Liu, S. F.; Gong, J. L. Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials. Energy Environ. Sci. 2019, 12, 923–928.

[34]

Guo, P.; Xiao, Y. Q.; Mo, R.; Li, X. L.; Li, H. X. Coherent-twinning-enhanced solar water splitting in thin-film Cu2ZnSnS4 photocathodes. ACS Energy Lett. 2023, 8, 494–501.

[35]

Vovk, E. I.; Kalinkin, A. V.; Smirnov, M. Y.; Klembovskii, I. O.; Bukhtiyarov, V. I. XPS study of stability and reactivity of oxidized Pt nanoparticles supported on TiO2. J. Phys. Chem. C 2017, 121, 17297–17304.

[36]

Tan, J.; Kang, B.; Kim, K.; Kang, D.; Lee, H.; Ma, S.; Jang, G.; Lee, H.; Moon, J. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 2022, 7, 537–547.

[37]

Chen, Z. W.; Li, Y.; Wang, L.; Bu, Y. Y.; Ao, J. P. Development of a bi-compound heterogeneous cocatalyst modified p-Si photocathode for boosting the photoelectrochemical water splitting performance. J. Mater. Chem. A 2021, 9, 9157–9164.

[38]

Alarawi, A.; Ramalingam, V.; Fu, H. C.; Varadhan, P.; Yang, R. S.; He, J. H. Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction. Opt. Express 2019, 27, A352–A363.

[39]

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 Nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

[40]

Shan, A. X.; Teng, X. A.; Zhang, Y.; Zhang, P. F.; Xu, Y. Y.; Liu, C. R.; Li, H.; Ye, H. Y.; Wang, R. M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913.

[41]

Liu, Y. M.; Zhao, S.; Zhang, D.; Liu, Z. Q.; Yuan, G. D. Microstructure-regulated inverted pyramidal Si photocathodes for efficient hydrogen generation. Nanoscale 2022, 14, 17571–17580.

[42]

Kan, M.; Yang, C.; Wang, Q. H.; Zhang, Q.; Yan, Y. Q.; Liu, K. H.; Guan, A. X.; Zheng, G. F. Defect-assisted electron tunneling for photoelectrochemical CO2 reduction to ethanol at low overpotentials. Adv. Energy Mater. 2022, 12, 2201134.

[43]

Chen, X. Y.; Yin, Z. C.; Cao, K.; Shen, S. H. Building directional charge transport channel in CdTe-based multilayered photocathode for efficient photoelectrochemical hydrogen evolution. ACS Mater. Lett. 2022, 4, 1381–1388.

[44]

Xu, H. W.; Zhang, W. D.; Yao, Y.; Yang, J. G.; Liu, J. Y.; Gu, Z. G.; Yan, X. D. Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting. J. Colloid Interface Sci. 2022, 629, 501–510.

[45]

Fan, R. L.; Cheng, S. B.; Huang, G. P.; Wang, Y. J.; Zhang, Y. Z.; Vanka, S.; Botton, G. A.; Mi, Z. T.; Shen, M. R. Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni-Mo/Ni. J. Mater. Chem. A 2019, 7, 2200–2209.

Nano Research
Pages 4428-4436
Cite this article:
Li J, Bai J, Hu S, et al. Construction of novel P-Si/TiO2/HfO2/MoS2/Pt hetero-photocathode for enhanced photoelectrochemical water splitting. Nano Research, 2024, 17(5): 4428-4436. https://doi.org/10.1007/s12274-023-6299-1
Topics:

672

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 September 2023
Revised: 13 October 2023
Accepted: 30 October 2023
Published: 01 December 2023
© Tsinghua University Press 2023
Return