AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

All-inorganic nitrate electrolyte for high-performance lithium oxygen battery

Dongyue Yang1,2Jiayi Du1,2Kai Chen1Haoran Zhang1,2Gang Huang1,2Tong Liu1,2Xinbo Zhang1,2Hongjie Zhang1,2( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

A low-cost and high-property all-inorganic nitrate electrolyte (LiNO3−KNO3−DMSO) has been developed for Li-O2 batteries. The introduction of K+ brings positive effects on both the cathode and anode sides, which is beneficial to increase the cell capacity and inhibit the lithium dendrite growth simultaneously, so as to achieve high-performance Li-O2 batteries.

Abstract

Lithium-oxygen (Li-O2) batteries have been regarded as an expectant successor for next-generation energy storage systems owing to their ultra-high theoretical energy density. However, the comprehensive properties of the commonly utilized organic salt electrolyte are still unsatisfactory, not to mention their expensive prices, which seriously hinders the practical production and application of Li-O2 batteries. Herein, we have proposed a low-cost all-inorganic nitrate electrolyte (LiNO3−KNO3−DMSO) for Li-O2 batteries. The inorganic nitrate electrolyte exhibits higher ionic conductivity and a wider electrochemical stability window than the organic salt electrolyte. The existence of K+ can stabilize the O2 intermediate, promoting the discharge process through the solution pathway with an enlarged capacity. Even at an ultra-low concentration of 0.01 M, the K+ can still remain stable to promote the solution discharge process and also possess a new function of inhibiting the dendrite growth by electrostatic shielding, further enhancing the battery stability and contributing to the long cycle lifetime. As a result, in the 0.99 M LiNO3−0.01 M KNO3−DMSO electrolyte, the Li-O2 batteries exhibit prolonged cycling performance (108 cycles) and excellent rate performance (2 A·g−1), significantly superior to the organic salt one.

Electronic Supplementary Material

Download File(s)
12274_2023_6353_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Jiao, S. H.; Ren, X. D.; Cao, R. G.; Engelhard, M. H.; Liu, Y. Z.; Hu, D. H.; Mei, D. H.; Zheng, J. M.; Zhao, W. G.; Li, Q. Y. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746.

[2]

Hou, B. W.; He, L.; Feng, X. N.; Zhang, W. F.; Wang, L.; He, X. M. Effect of amine additives on thermal runaway inhibition of SiC||NCM811 batteries. J. Electrochem. 2023, 29, 2211141.

[3]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[4]

Cao, R. F.; Cui, Y. F.; Huang, G.; Liu, W. Q.; Liu, J. W.; Zhang, X. B. Designing a photo-assisted Co-C3N4 cathode for high performance Li-O2 batteries. Nano Res. 2023, 16, 8405–8410.

[5]

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

[6]

Chen, K.; Huang, G.; Zhang, X. B. Efforts towards practical and sustainable Li/Na-air batteries. Chin. J. Chem. 2021, 39, 32–42.

[7]

Zheng, X. Y.; Huang, L. Q.; Ye, X. L.; Zhang, J. X.; Min, F. Y.; Luo, W.; Huang, Y. H. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 2021, 7, 2312–2346.

[8]

Mauler, L.; Duffner, F.; Zeier, W. G.; Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy Environ. Sci. 2021, 14, 4712–4739.

[9]

Guo, R. Q.; Wu, F.; Wang, X. R.; Bai, Y.; Wu, C. Multi-electron reaction-boosted high energy density batteries: Material and system innovation. J. Electrochem. 2022, 28, 2219011.

[10]

Ding, Z. Y.; Tang, Q. M.; Zhang, Q.; Yao, P. H.; Liu, X. J.; Wu, J. W. A flexible solid polymer electrolyte enabled with lithiated zeolite for high performance lithium battery. Nano Res. 2023, 16, 9443–9452.

[11]

Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

[12]

Cai, Y. C.; Hou, Y. P.; Lu, Y.; Zhang, Q.; Yan, Z. H.; Chen, J. Ionic liquid electrolyte with weak solvating molecule regulation for stable Li deposition in high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2023, 62, e202218014.

[13]

Liu, B.; Xu, W.; Yan, P. F.; Kim, S. T.; Engelhard, M. H.; Sun, X. L.; Mei, D. H.; Cho, J.; Wang, C. M.; Zhang, J. G. Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1602605.

[14]

Zhang, X. P.; Li, Y. N.; Sun, Y. Y.; Zhang, T. Inverting the triiodide formation reaction by the synergy between strong electrolyte solvation and cathode adsorption for lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 18394–18398.

[15]

Ko, Y.; Park, H.; Lee, K.; Kim, S. J.; Park, H.; Bae, Y.; Kim, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 5376–5380.

[16]

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

[17]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[18]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[19]

McCloskey, B. D.; Valery, A.; Luntz, A. C.; Gowda, S. R.; Wallraff, G. M.; Garcia, J. M.; Mori, T.; Krupp, L. E. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 2989–2993.

[20]

Veith, G. M.; Nanda, J.; Delmau, L. H.; Dudney, N. J. Influence of lithium salts on the discharge chemistry of Li-air cells. J. Phys. Chem. Lett. 2012, 3, 1242–1247.

[21]

Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.

[22]

Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

[23]

Nasybulin, E.; Xu, W.; Engelhard, M. H.; Nie, Z. M.; Burton, S. D.; Cosimbescu, L.; Gross, M. E.; Zhang, J. G. Effects of electrolyte salts on the performance of Li-O2 batteries. J. Phys. Chem. C 2013, 117, 2635–2645.

[24]

Younesi, R.; Urbonaite, S.; Edström, K.; Hahlin, M. The cathode surface composition of a cycled Li–O2 battery: A photoelectron spectroscopy study. J. Phys. Chem. C 2012, 116, 20673–20680.

[25]

Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.

[26]

Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004.

[27]

Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 411–416.

[28]

Xin, X.; Ito, K.; Dutta, A.; Kubo, Y. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 13206–13210.

[29]

Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. Mechanistic role of Li+ dissociation level in aprotic Li-O2 battery. ACS Appl. Mater. Interfaces 2016, 8, 5300–5307.

[30]

Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. USA 2015, 112, 9293–9298.

[31]

Yoo, E.; Zhou, H. S. Enhanced cycle stability of rechargeable Li-O2 batteries by the synergy effect of a LiF protective layer on the Li and DMTFA additive. ACS Appl. Mater. Interfaces 2017, 9, 21307–21313.

[32]

Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

[33]

Chen, K.; Huang, G.; Ma, J. L.; Wang, J.; Yang, D. Y.; Yang, X. Y.; Yu, Y.; Zhang, X. B. The stabilization effect of CO2 in lithium-oxygen/CO2 batteries. Angew. Chem., Int. Ed. 2020, 59, 16661–16667.

[34]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2016.
[35]

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

[36]

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

[37]

Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377.

[38]

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

[39]

Meng, J. W.; Lei, M.; Lai, C. Z.; Wu, Q. P.; Liu, Y. Y.; Li, C. L. Lithium ion repulsion-enrichment synergism induced by core–shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 23256–23266.

[40]

Qin, L.; Schkeryantz, L.; Zheng, J. F.; Xiao, N.; Wu, Y. Y. Superoxide-based K-O2 batteries: Highly reversible oxygen redox solves challenges in air electrodes. J. Am. Chem. Soc. 2020, 142, 11629–11640.

[41]

Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.

[42]

Lu, Y. C.; Crumlin, E. J.; Veith, G. M.; Harding, J. R.; Mutoro, E.; Baggetto, L.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. In situ ambientpressure X-ray photoelectron spectroscopy studies of lithium-oxygenredox reactions. Sci. Rep. 2012, 2, 715.

[43]

Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy Environ. Sci. 2017, 10, 1828–1842.

[44]

Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Potassium ions promote solution-route Li2O2 formation in the positive electrode reaction of Li-O2 batteries. J. Phys. Chem. Lett. 2017, 8, 1142–1146.

[45]

Zhao, S.; Wang, C. C.; Du, D. F.; Li, L.; Chou, S. L.; Li, F. J.; Chen, J. Bifunctional effects of cation additive on Na-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 3205–3211.

[46]

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

[47]

Yang, Q. F.; Hu, J. L.; Meng, J. W.; Li, C. L. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 2021, 14, 3621–3631.

[48]

Cong, G. T.; Wang, W. W.; Lai, N. C.; Liang, Z. J.; Lu, Y. C. A high-rate and long-life organic-oxygen battery. Nat. Mater. 2019, 18, 390–396.

[49]

Zhang, X. P.; Sun, Y. Y.; Sun, Z.; Yang, C. S.; Zhang, T. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries. Nat. Commun. 2019, 10, 3543.

[50]

Wu, X. H.; Niu, B.; Zhang, H. T.; Li, Z. G.; Luo, H. Y.; Tang, Y. L.; Yu, X. Y.; Huang, L.; He, X. R.; Wang, X. et al. Enhancing the reaction kinetics and reversibility of Li-O2 batteries by multifunctional polymer additive. Adv. Energy Mater. 2023, 13, 2203089.

[51]

Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

[52]

Tong, B.; Huang, J.; Zhou, Z. B.; Peng, Z. Q. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li[(CF3SO2)( n-C4F9SO2)N]-based electrolyte. Adv. Mater. 2018, 30, 1704841.

Nano Research
Pages 4163-4170
Cite this article:
Yang D, Du J, Chen K, et al. All-inorganic nitrate electrolyte for high-performance lithium oxygen battery. Nano Research, 2024, 17(5): 4163-4170. https://doi.org/10.1007/s12274-023-6353-z
Topics:

521

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 22 October 2023
Revised: 18 November 2023
Accepted: 20 November 2023
Published: 12 December 2023
© Tsinghua University Press 2023
Return