AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional electroactive bio-adhesive for robustly-integrated wound therapy and postoperative wound-status warning and assessment

Ouyang Yue1,§Xuechuan Wang1,§( )Mengdi Hou2,§Siwei Sun3Manhui Zheng1Xiaoliang Zou1Zhongxue Bai1Chunlin Liu4Xinhua Liu1( )
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an 710021, China
Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an 710021, China
School of Mechanical Engineering, Chengdu University, Chengdu 610000, China

§ Ouyang Yue, Xuechuan Wang, and Mengdi Hou contributed equally to this work.

Show Author Information

Graphical Abstract

The article introduces a double-layer gelatin-based bio-adhesive (DLGel) that exhibits strong adhesive strength on wet and dynamic tissues, promotes comprehensive wound healing through electrical stimulation, and possesses reversible underwater light-/thermal-adhesion, hemostatic performance, antimicrobial properties, and self-repair capability. An innovative deep learning algorithm is utilized to convert the electrical signals collected by DLGel into visual graphics, enabling real-time evaluations of postoperative wound anomalies and morphology. This research promotes intelligent non-clinical comprehensive treatment.

Abstract

Wound abnormalities such as secondary wound laceration and inflammation are common postoperative health hazards during clinical procedures. The continuous treatment, healing induction, and real-time visualization of wound status and complications, including wound re-tearing, inflammation, and morphology, are key focal points for comprehensive healthcare. Herein, an on-demand quadruple energy dissipative strategy was proposed for the nanoengineering of a physically and chemically synergistic double-layer gelatin-based bio-adhesive (DLGel) by combining a multi-network adhesive layer and a versatile electroactive energy dissipative layer based on contrivable interlocking micro-pillar arrays and crosslinked polymer chains. The subtly multiple energy dissipation designs enable DLGel with robust adhesive strength to omnipotently wet and dynamic tissue, providing a basis for reliable wound closure. DLGel achieves comprehensive wound-healing induction through electrical stimulation and possesses reversible underwater light/thermal adhesion, excellent hemostatic performance, outstanding antimicrobial properties, and self-repair capability. Furthermore, a novel deep-learning strategy is creatively established to respond to mechanical deformation due to wound anomalies. This strategy translates biological information into visual graphics, providing real-time early warning and assessment of postoperative wound-abnormality/-morphology, such as laceration, inflammation, and necrosis. Therefore, DLGel and its associated signal collection and processing protocol enable the integration of reliable wound closure, wound healing, and real-time postoperative wound-status warning and assessment within the unobservable and undetectable “black box” regions in a context of non-clinical comprehensive therapy.

Electronic Supplementary Material

Video
12274_2023_6384_MOESM2_ESM.mp4
12274_2023_6384_MOESM3_ESM.mp4
12274_2023_6384_MOESM4_ESM.mp4
12274_2023_6384_MOESM5_ESM.mp4
Download File(s)
12274_2023_6384_MOESM1_ESM.pdf (660.6 KB)

References

[1]

Guan, Y.; Niu, H.; Liu, Z. T.; Dang, Y.; Shen, J.; Zayed, M.; Ma, L.; Guan, J. J. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci. Adv. 2021, 7, eabj0153.

[2]

Carlson, M. A. Acute wound failure. Surg. Clin. North Am. 1997, 77, 607–636.

[3]

Khamaisi, M.; Katagiri, S.; Keenan, H.; Park, K.; Maeda, Y.; Li, Q.; Qi, W. E.; Thomou, T.; Eschuk, D.; Tellechea, A. et al. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J. Clin. Invest. 2016, 126, 837–853.

[4]

Ariyanti, A. D.; Zhang, J. Q.; Marcelina, O.; Nugrahaningrum, D. A.; Wang, G. X.; Kasim, V.; Wu, S. R. Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia. Stem Cells Transl. Med. 2019, 8, 404–414.

[5]

Cho, H.; Blatchley, M. R.; Duh, E. J.; Gerecht, S. Acellular and cellular approaches to improve diabetic wound healing. Adv. Drug. Deliv. Rev. 2019, 146, 267–288.

[6]

Haque, S. T.; Saha, S. K.; Haque, M. E.; Biswas, N. Nanotechnology-based therapeutic applications: In vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 2021, 9, 7705–7747.

[7]

Wolcott, R. D.; Rhoads, D. D.; Dowd, S. E. Biofilms and chronic wound inflammation. J. Wound Care 2008, 17, 333–341.

[8]

Blair, M. J.; Jones, J. D.; Woessner, A. E.; Quinn, K. P. Skin structure–function relationships and the wound healing response to intrinsic aging. Adv. Wound Care 2020, 9, 127–143.

[9]

Magaz, A.; Faroni, A.; Gough, J. E.; Reid, A. J.; Li, X.; Blaker, J. J. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv. Healthc. Mater. 2018, 7, 1800308.

[10]

Tao, J.; Zhang, J. M.; Du, T.; Xu, X.; Deng, X. M.; Chen, S. C.; Liu, J. L.; Chen, Y. W.; Liu, X.; Xiong, M. M. et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019, 90, 49–59.

[11]
Rosen, R. D.; Manna, B. Wound Dehiscence; StatPearls Publishing: Treasure Island, 2019.
[12]

Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381.

[13]

Wang, L. R.; Zhou, M. Y.; Xu, T. L.; Zhang, X. J. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 2022, 433, 134625.

[14]

Derakhshandeh, H.; Kashaf, S. S.; Aghabaglou, F.; Ghanavati, I. O.; Tamayol, A. Smart bandages: The future of wound care. Trends Biotechnol. 2018, 36, 1259–1274.

[15]

Zhao, X.; Liang, Y. P.; Huang, Y.; He, J. H.; Han, Y.; Guo, B. L. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748.

[16]

Ma, Z. W.; Bao, G. Y.; Li, J. Y. Multifaceted design and emerging applications of tissue adhesives. Adv. Mater. 2021, 33, 2007663.

[17]

Bré, L. P.; Zheng, Y.; Pêgo, A. P.; Wang, W. X. Taking tissue adhesives to the future: From traditional synthetic to new biomimetic approaches. Biomater. Sci. 2013, 1, 239–253.

[18]

Li, M.; Pan, G. Y.; Zhang, H. L.; Guo, B. L. Hydrogel adhesives for generalized wound treatment: Design and applications. J. Polym. Sci. 2022, 60, 1328–1359.

[19]

Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.

[20]

Liu, B. C.; Wang, Y.; Miao, Y.; Zhang, X. Y.; Fan, Z. X.; Singh, G.; Zhang, X. Y.; Xu, K. G.; Li, B. Y.; Hu, Z. Q. et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 2018, 171, 83–96.

[21]

Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.

[22]

Orlov, A.; Lustig, A.; Grigatti, A.; Gefen, A. Fluid handling dynamics and durability of silver-containing gelling fiber dressings tested in a robotic wound system. Adv. Skin Wound Care 2022, 35, 326–334.

[23]

Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv. Mater. 2019, 31, 1803309.

[24]

Son, D.; Bao, Z. N. Nanomaterials in skin-inspired electronics: Toward soft and robust skin-like electronic nanosystems. ACS Nano 2018, 12, 11731–11739.

[25]

Takei, K.; Gao, W.; Wang, C.; Javey, A. Physical and chemical sensing with electronic skin. Proc. IEEE 2019, 107, 2155–2167.

[26]

Wan, Y. B.; Qiu, Z. G.; Huang, J.; Yang, J. Y.; Wang, Q.; Lu, P.; Yang, J. L.; Zhang, J. M.; Huang, S. Y.; Wu, Z. G. et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, 1801657.

[27]

Kim, M. H.; Cho, C. H.; Kim, J. S.; Nam, T. U.; Kim, W. S.; Lee, T. I.; Oh, J. Y. Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy 2021, 87, 106156.

[28]

Gan, D. L.; Huang, Z. Q.; Wang, X.; Xu, D. J.; Rao, S. Q.; Wang, K. F.; Ren, F. Z.; Jiang, L. L.; Xie, C. M.; Lu, X. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox–active core–shell PEDOT@PZIF-71 system. Mater. Horiz. 2023, 10, 2169–2180.

[29]

Xie, C. M.; Luo, J. Q.; Luo, Y. J.; Zhou, J.; Guo, X. C.; Lu, X. Electroactive hydrogels with photothermal/photodynamic effects for effective wound healing assisted by polydopamine-modified graphene oxide. ACS Appl. Mater. Interfaces 2023, 15, 42329–42340.

[30]

Pan, G. X.; Li, F. H.; He, S. H.; Li, W. D.; Wu, Q. M.; He, J. J.; Ruan, R. J.; Xiao, Z. X.; Zhang, J.; Yang, H. H. Mussel- and barnacle cement proteins-inspired dual-bionic bioadhesive with repeatable wet-tissue adhesion, multimodal self-healing, and antibacterial capability for nonpressing hemostasis and promoted wound healing. Adv. Funct. Mater. 2022, 32, 2200908.

[31]

Ghobril, C.; Grinstaff, M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015, 44, 1820–1835.

[32]

Heinrich, L. A. Future opportunities for bio-based adhesives-advantages beyond renewability. Green Chem. 2019, 21, 1866–1888.

[33]

Jiang, T.; Munguia-Lopez, J. G.; Gu, K.; Bavoux, M. M.; Flores-Torres, S.; Kort-Mascort, J.; Grant, J.; Vijayakumar, S.; De Leon-Rodriguez, A.; Ehrlicher, A. J. et al. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 2019, 12, 015024.

[34]

Liang, J.; Guo, Z. C.; Timmerman, A.; Grijpma, D.; Poot, A. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomed. Mater. 2019, 14, 024102.

[35]

Sani, E. S.; Lara, R. P.; Aldawood, Z.; Bassir, S. H.; Nguyen, D.; Kantarci, A.; Intini, G.; Annabi, N. An antimicrobial dental light curable bioadhesive hydrogel for treatment of peri-implant diseases. Matter 2019, 1, 926–944.

[36]

Ke, X.; Dong, Z. Y.; Tang, S. X.; Chu, W. L.; Zheng, X. R.; Zhen, L.; Chen, X. Y.; Ding, C. M.; Luo, J.; Li, J. S. A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. Biomater. Sci. 2020, 8, 4346–4357.

[37]

Mosleh, Y.; de Zeeuw, W.; Nijemeisland, M.; Bijleveld, J. C.; van Duin, P.; Poulis, J. A. The structure–property correlations in dry gelatin adhesive films. Adv. Eng. Mater. 2021, 23, 2000716.

[38]

Pei, X. J.; Wang, J. T.; Cong, Y.; Fu, J. Recent progress in polymer hydrogel bioadhesives. J. Polym. Sci. 2021, 59, 1312–1337.

[39]

Tang, X. D.; Wang, X. M.; Sun, Y. H.; Zhao, L.; Li, D. W.; Zhang, J. H.; Sun, H. C.; Yang, B. Magnesium oxide-assisted dual-cross-linking bio-multifunctional hydrogels for wound repair during full-thickness skin Injuries. Adv. Funct. Mater. 2021, 31, 2105718.

[40]

Saleh, B.; Dhaliwal, H. K.; Portillo-Lara, R.; Shirzaei Sani, E.; Abdi, R.; Amiji, M. M.; Annabi, N. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small 2019, 15, 1902232.

[41]

Shirzaei Sani, E.; Kheirkhah, A.; Rana, D.; Sun, Z. M.; Foulsham, W.; Sheikhi, A.; Khademhosseini, A.; Dana, R.; Annabi, N. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci. Adv. 2019, 5, eaav1281.

[42]

Trujillo-de Santiago, G.; Sharifi, R.; Yue, K.; Sani, E. S.; Kashaf, S. S.; Alvarez, M. M.; Leijten, J.; Khademhosseini, A.; Dana, R.; Annabi, N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019, 197, 345–367.

[43]

Han, N.; Xu, Z. Y.; Cui, C. Y.; Li, Y.; Zhang, D. F.; Xiao, M.; Fan, C. C.; Wu, T. L.; Yang, J. H.; Liu, W. G. A Fe3+-crosslinked pyrogallol-tethered gelatin adhesive hydrogel with antibacterial activity for wound healing. Biomater. Sci. 2020, 8, 3164–3172.

[44]

Chen, J.; Wang, D.; Wang, L. H.; Liu, W. J.; Chiu, A.; Shariati, K.; Liu, Q. S.; Wang, X.; Zhong, Z.; Webb, J. et al. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 2020, 32, 2001628.

[45]

Ge, L. P.; Chen, S. X. Recent advances in tissue adhesives for clinical medicine. Polymers 2020, 12, 939.

[46]

Sharifi, S.; Islam, M. M.; Sharifi, H.; Islam, R.; Koza, D.; Reyes-Ortega, F.; Alba-Molina, D.; Nilsson, P. H.; Dohlman, C. H.; Mollnes, T. E. et al. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact. Mater. 2021, 6, 3947–3961.

[47]

Huang, Y. W.; King, D. R.; Sun, T. L.; Nonoyama, T.; Kurokawa, T.; Nakajima, T.; Gong, J. P. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater. 2017, 27, 1605350.

[48]

Kim, J.; Kim, D. W.; Baik, S.; Hwang, G. W.; Kim, T. I.; Pang, C. Snail-inspired dry adhesive with embedded microstructures for enhancement of energy dissipation. Adv. Mater. Technol. 2019, 4, 1900316.

[49]

Liu, Z. X.; Liang, G. J.; Zhan, Y. X.; Li, H. F.; Wang, Z. F.; Ma, L. T.; Wang, Y. K.; Niu, X. R.; Zhi, C. Y. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy 2019, 58, 732–742.

[50]

Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

[51]

Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

[52]

Fan, L.; Xiao, C. R.; Guan, P. F.; Zou, Y.; Wen, H. Q.; Liu, C.; Luo, Y. A.; Tan, G. X.; Wang, Q. Y.; Li, Y. F. et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv. Healthc. Mater. 2022, 11, 2101556.

[53]

Zhang, Q.; Liu, X.; Duan, L. J.; Gao, G. H. Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chem. Eng. J. 2019, 365, 10–19.

[54]

Chen, K.; Wu, Z. H.; Liu, Y. T.; Yuan, Y.; Liu, C. S. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, 32, 2109687.

[55]

Yang, J. W.; Bai, R. B.; Chen, B. H.; Suo, Z. G. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 2020, 30, 1901693.

[56]

Qian, C.; Higashigaki, T.; Asoh, T. A.; Uyama, H. Anisotropic conductive hydrogels with high water content. ACS Appl. Mater. Interfaces 2020, 12, 27518–27525.

[57]

Baidya, A.; Ghovvati, M.; Lu, C.; Naghsh-Nilchi, H.; Annabi, N. Designing a nitro-induced sutured biomacromolecule to engineer electroconductive adhesive hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 49483–49494.

[58]

Park, H. K.; Lee, D.; Lee, H.; Hong, S. A nature-inspired protective coating on soft/wet biomaterials for SEM by aerobic oxidation of polyphenols. Mater. Horiz. 2020, 7, 1387–1396.

Nano Research
Pages 4359-4370
Cite this article:
Yue O, Wang X, Hou M, et al. Multifunctional electroactive bio-adhesive for robustly-integrated wound therapy and postoperative wound-status warning and assessment. Nano Research, 2024, 17(5): 4359-4370. https://doi.org/10.1007/s12274-023-6384-5
Topics:

511

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 October 2023
Revised: 27 November 2023
Accepted: 30 November 2023
Published: 24 January 2024
© Tsinghua University Press 2023
Return