AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency

Jingke Ren1,§Boyu Xing1,§Wen Luo2( )Binyang Luo1Xinfei Wu1Xin Yan2Wencong Feng1Feiyue Wang1Chaojie Cheng1Liqiang Mai1 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China

§ Jingke Ren and Boyu Xing contributed equally to this work.

Show Author Information

Graphical Abstract

The nanostructured graphite prepared by the one-pot method at low temperature has a stable conductive three-dimensional (3D) structure, which can reduce the polarization of the graphite electrode and stabilize potassium storage at high current density.

Abstract

Industrially prepared artificial graphite (AG) is attractive for potassium-ion batteries (PIBs), but its rate performance is poor and the production process is energy intensive, so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important. Herein, a nanostructured graphite composed of multi-walled carbon nanotubes (MWCNTs) and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework (MOF) and carbon source. The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency (ICE) exceed 80%, and the three-dimensional (3D) conductive network ensures a specific capacity of 234 mAh·g−1 after 1000 cycles at a high current density of 500 mA·g−1. In addition, the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction (XRD) and in situ Raman spectroscopy, and its practicality is also proved by the voltage of the full cells. This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.

Electronic Supplementary Material

Download File(s)
12274_2024_6429_MOESM1_ESM.pdf (3.5 MB)

References

[1]

Fan, Q. Z.; Lin, L.; Jian, Z. L.; Liu, G. M.; Zhao, C. X.; Qi, Y. Y. Biomass-derived carbon fibers modified by Ag/rGO for high-performance Li metal composite anode. J. Mater. Sci. Mater. Electron. 2023, 34, 25.

[2]

Li, G. L.; Wang, Y. T.; Guo, H.; Liu, Z. L.; Chen, P. H.; Zheng, X. Y.; Sun, J. L.; Chen, H.; Zheng, J.; Li, X. G. Direct plasma phosphorization of Cu foam for Li ion batteries. J. Mater. Chem. A 2020, 8, 16920–16925.

[3]

Abdelmaoula, A. E.; Du, L. L.; Xu, L.; Cheng, Y.; Mahdy, A. A.; Tahir, M.; Liu, Z. A.; Mai, L. Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Sci. China Mater. 2022, 65, 1476–1484.

[4]

Su, L.; Ren, J. K.; Lu, T.; Chen, K. X.; Ouyang, J. W.; Zhang, Y.; Zhu, X. Y.; Wang, L. Y.; Min, H. H.; Luo, W. et al. Deciphering structural origins of highly reversible lithium storage in high entropy oxides with in situ transmission electron microscopy. Adv. Mater. 2023, 35, 2205751.

[5]

Guerra, O. J. Beyond short-duration energy storage. Nat. Energy 2021, 6, 460–461.

[6]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[7]

Zhang, X.; Meng, J. S.; Wang, X. P.; Xiao, Z. T.; Wu, P. J.; Mai, L. Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Storage Mater. 2021, 38, 30–49.

[8]

Tarascon, J. M. Is lithium the new gold. Nat. Chem. 2010, 2, 510–510.

[9]

Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.

[10]

Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387–8390.

[11]

Asher, R. C.; Wilson, S. A. Lamellar compound of sodium with graphite. Nature 1958, 181, 409–410.

[12]

Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28–30, 1172–1175

[13]

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

[14]

Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

[15]

Wang, C. X.; Yu, R. H.; Luo, W.; Feng, W. C.; Shen, Y. H.; Xu, N.; Mai, L. Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Res. 2022, 15, 9019–9025.

[16]

Feng, Y. H.; Rao, A. M.; Zhou, J.; Lu, B. A. Selective potassium deposition enables dendrite-resistant anodes for ultrastable potassium-metal batteries. Adv. Mater. 2023, 35, 2300886.

[17]

Hu, Y.; Tang, C.; Lv, F. T.; Du, A. J.; Wu, Z. S.; Zhang, H. J. K-functionalized carbon quantum dots-induced interface assembly of carbon nanocages for ultrastable potassium storage performance. Small Methods 2022, 6, 2101627.

[18]

Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018, 11, 202–208.

[19]

Wang, M.; Wang, Q. C.; Ding, X. Y.; Wang, Y. S.; Xin, Y. H.; Singh, P.; Wu, F.; Gao, H. C. The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 2022, 1, 373–395.

[20]

Wang, H.; Liu, F.; Yu, R. H.; Wu, J. S. Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy. Interdiscip. Mater. 2022, 1, 196–212.

[21]

Deng, L. Q.; Qu, J. L.; Niu, X. G.; Liu, J. Z.; Zhang, J.; Hong, Y. R.; Feng, M. Y.; Wang, J. W.; Hu, M.; Zeng, L. et al. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat. Commun. 2021, 12, 2167.

[22]

Bie, X. F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. A novel K-ion battery: Hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 2017, 5, 4325–4330.

[23]

Li, X. D.; Li, J. L.; Ma, L.; Yu, C. Y.; Ji, Z.; Pan, L. K.; Mai, W. Graphite anode for potassium ion batteries: Current status and perspective. Energy Environ. Mater. 2022, 5, 458–469.

[24]
Wall Street Crocodile. SOHU: Top 10 shipments of anode materials in China in 2023H1 (in Chinese) [Online]. https://www.sohu.com/a/715607072_121123888 (accessed Nov 1, 2023).
[25]

Kim, J. K.; Jung, D. S.; Lee, J. K.; Kang, Y. C. Less energy-intensive synthesis of mesoporous multi-oriented graphite microspheres with low defect concentration for advanced potassium-ion battery anodes. Chem. Eng. J. 2022, 443, 136545.

[26]

Lee, S. M.; Kang, D. S.; Roh, J. S. Bulk graphite: Materials and manufacturing process. Carbon Lett. 2015, 16, 135–146.

[27]

Choi, S. H.; Baucom, J.; Li, X. R.; Shen, L.; Seong, Y. H.; Han, I. S.; Choi, Y. J.; Ko, Y. N.; Kim, H. J.; Lu, Y. F. Porous carbon microspheres with highly graphitized structure for potassium-ion storage. J. Colloid Interface Sci. 2020, 577, 48–53.

[28]

Shen, M. K.; Ding, H. B.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Neuromorphic carbon for fast and durable potassium storage. Adv. Funct. Mater. 2023, 33, 2213362.

[29]

Tian, S.; Jiang, Q. T.; Cai, T. H.; Wang, Y. S.; Wang, D. D.; Kong, D. Q.; Ren, H.; Zhou, J.; Xing, W. Graphitized electrospun carbon fibers with superior cyclability as a free-standing anode of potassium-ion batteries. J. Power Sources 2020, 474, 228479.

[30]

Ma, X. M.; Fu, H. W.; Shen, J. Y.; Zhang, D. W.; Zhou, J. W.; Tong, C. Y.; Rao, A. M.; Zhou, J.; Fan, L.; Lu, B. A. Green ether electrolytes for sustainable high-voltage potassium ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202312973.

[31]

Li, Z. Q.; Wen, J. Q.; Cai, Y. Q.; Lv, F. T.; Zeng, X.; Liu, Q.; Masese, T.; Zhang, C. X.; Yang, X. S.; Ma, Y. W. et al. Hydrated Bi-Ti-bimetal ethylene glycol: A new high-capacity and stable anode material for potassium-ion batteries. Adv. Funct. Mater. 2023, 33, 2300582.

[32]

Sun, D. G.; Tang, C.; Cheng, H.; Xu, W. L.; Du, A. J.; Zhang, H. J. Pumpkin-like MoP-MoS2@aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. J. Energy Chem. 2022, 72, 479–486.

[33]

He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.

[34]

Hunter, R. D.; Ramírez-Rico, J.; Schnepp, Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 2022, 10, 4489–4516.

[35]

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

[36]

Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

[37]

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

[38]

Zhao, C. B.; Jiang, Z.; Liu, Y.; Zhou, Y.; Yin, P. C.; Ke, Y. B.; Deng, H. X. Molecular compartments created in metal-organic frameworks for efficient visible-light-driven CO2 overall conversion. J. Am. Chem. Soc. 2022, 144, 23560–23571.

[39]

Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 2820–2822

[40]

Liu, Y.; Dai, H. D.; Wu, L.; Zhou, W. B.; He, L.; Wang, W. G.; Yan, W. Q.; Huang, Q. H.; Fu, L. J.; Wu, Y. P. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1901379.

[41]

Feng, W. C.; Wang, H.; Jiang, Y. L.; Zhang, H. Z.; Luo, W.; Chen, W.; Shen, C. L.; Wang, C. X.; Wu, J. S.; Mai, L. Q. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 2022, 12, 2103343.

[42]

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

[43]

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

[44]

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

[45]

Shin, M. C.; Kim, J. H.; Nam, S.; Oh, Y. J.; Jin, H. J.; Park, C. R.; Zhang, Q.; Yang, S. J. Atomic-distributed coordination state of metal-phenolic compounds enabled low temperature graphitization for high-performance multioriented graphite anode. Small 2020, 16, 2003104.

[46]

Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Heckmann, A.; Winter, M.; Placke, T.; Ramirez-Rico, J. Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries. ChemSusChem 2018, 11, 2776–2787.

[47]

Kwiecinska, B.; Murchison, D. G.; Scott, E. Optical properties of graphite. J. Microsc. 1977, 109, 289–302.

[48]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[49]

Wang, D. D.; Li, L. J.; Zhang, Z. H.; Liu, J.; Guo, X. S.; Mao, C. M.; Peng, H. R.; Li, Z. J.; Li, G. C. Mechanistic insights into the intercalation and interfacial chemistry of mesocarbon microbeads anode for potassium ion batteries. Small 2021, 17, 2103557.

[50]

Li, W. D.; Wang, D. Z.; Gong, Z. J.; Yin, Z. M.; Guo, X. S.; Liu, J.; Mao, C. M.; Zhang, Z. H.; Li, G. C. A robust strategy for engineering Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2 nanosheets for superior potassium-ion storage. ACS Nano 2020, 14, 16046–16056.

[51]

Feng, Y. H.; Chen, S. H.; Shen, D. Y.; Zhou, J.; Lu, B. A. Cross-linked hollow graphitic carbon as low-cost and high-performance anode for potassium ion batteries. Energy Environ. Mater. 2021, 4, 451–457.

[52]

Wang, D. N.; Du, X. Q.; Zhang, B. Solvent molecular design to regulate the intercalation behavior in ether electrolyte for stable graphite anodes in potassium-ion batteries. Small Struct. 2022, 3, 2200078.

[53]

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

[54]

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

[55]

Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

[56]

Tan, W.; Wang, L. N.; Liu, K.; Lu, Z. G.; Yang, F.; Luo, G. F.; Xu, Z. H. Bitumen-derived onion-like soft carbon as high-performance potassium-ion battery anode. Small 2022, 18, 2203494.

Nano Research
Pages 5138-5147
Cite this article:
Ren J, Xing B, Luo W, et al. Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency. Nano Research, 2024, 17(6): 5138-5147. https://doi.org/10.1007/s12274-024-6429-4
Topics:

836

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 November 2023
Revised: 18 December 2023
Accepted: 19 December 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return