Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Solid polymer electrolytes (SPEs) hold great application potential for solid-state lithium metal battery because of the excellent interfacial contact and processibility, but being hampered by the poor room-temperature conductivity (~ 10−7 S·cm−1) and low lithium-ion transference number (
Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.
Lin, X. D.; Zhou, G. D.; Liu, J. P.; Yu, J.; Effat, M. B.; Wu, J. X.; Ciucci, F. Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 2020, 10, 2001235.
Qiu, J. L.; Liu, X. Y.; Chen, R. S.; Li, Q. H.; Wang, Y.; Chen, P. H.; Gan, L. Y.; Lee, S. J.; Nordlund, D.; Liu, Y. J. et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 2020, 30, 1909392.
Lu, X.; Wang, Y. M.; Xu, X. Y.; Yan, B. G.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries—Review. Adv. Energy Mater. 2023, 13, 2301746.
Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.
Xiao, Z. L.; Zhou, B. H.; Wang, J. R.; Zuo, C.; He, D.; Xie, X. L.; Xue, Z. G. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 2019, 576, 182–189.
Liu, H. B.; Sun, Q.; Cheng, J.; Zhang, H. Q.; Xu, X.; Li, Y. Y.; Zeng, Z.; Zhao, Y.; Li, D. P.; Lu, J. Y. et al. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers. Nano Res. 2023, 16, 12727–12737.
Kumar, M.; Sekhon, S. S. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. J. 2002, 38, 1297–1304.
Su, Y. T.; Zhang, W. Q.; Lan, J. L.; Sui, G.; Zhang, H. T.; Yang, X. P. Flexible reduced graphene oxide/polyacrylonitrile dielectric nanocomposite films for high-temperature electronics applications. ACS Appl. Nano Mater. 2020, 3, 7005–7015.
Patil, N.; Oh, J. H.; Khatri, S.; Saed, M. A.; Naraghi, M.; Green, M. J. Radio frequency heating response of polyacrylonitrile (PAN) films and nanofiber mats. ACS Appl. Polym. Mater. 2021, 3, 3125–3130.
Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.
Hu, P.; Chai, J. C.; Duan, Y. L.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4, 10070–10083.
Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.
Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.
Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.
Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.
Zhang, Y.; Zhang, L.; Guo, P.; Zhang, C. Y.; Ren, X. C.; Jiang, Z.; Song, J. J.; Shi, C. Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Res. 2024, 17, 2663–2670
Lu, G. L.; Zhang, Y. J.; Zhang, J. J.; Du, X. F.; Lv, Z. L.; Du, J. Z.; Zhao, Z. M.; Tang, Y.; Zhao, J. W.; Cui, G. L. Trade-offs between ion-conducting and mechanical properties: The case of polyacrylate electrolytes. Carbon Energy 2023, 5, e287.
Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.
Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.
Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.
Mi, J. S.; Ma, J. B.; Chen, L. K.; Lai, C.; Yang, K.; Biao, J.; Xia, H. Y.; Song, X.; Lv, W.; Zhong, G. M. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 2022, 48, 375–383.
Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.
Liu, J. F.; Wu, Z. Y.; Stadler, F. J.; Huang, Y. F. High dielectric poly(vinylidene fluoride)-based polymer enables uniform lithium-ion transport in solid-state ionogel electrolytes. Angew. Chem., Int. Ed. 2023, 62, e202300243.
Huang, Y. F.; Zeng, J. P.; Li, S. F.; Dai, C.; Liu, J. F.; Liu, C.; He, Y. B. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 2023, 13, 2203888.
Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.
Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Induced formation of dominating polar phases of poly(vinylidene fluoride): Positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B 2014, 118, 9104–9111.
Chu, Z. Z.; Zhao, R. J.; Wang, B.; Liu, L.; Ma, Z.; Li, Y. S. Effect of ions on the flow-induced crystallization of poly(vinylidene fluoride). Macromolecules 2021, 54, 3800–3809.
Yu, S. S.; Zheng, W. T.; Yu, W. X.; Zhang, Y. J.; Jiang, Q.; Zhao, Z. D. Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 2009, 42, 8870–8874.
Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.
Wang, J. T.; Liu, Y. R.; Dang, J. C.; Zhou, G. L.; Wang, Y.; Zhang, Y. F.; Qu, L. B.; Wu, W. J. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978.
Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2T x MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.
Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.
Zheng, Y. F.; Zhou, Z. F.; Jiao, M. Q.; Wang, L.; Zhang, J.; Wu, W. J.; Wang, J. T. Lamellar membrane with orderly aligned glycine molecules for efficient proton conduction. J. Membr. Sci. 2023, 672, 121433.
Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.
Xiang, J. W.; Cheng, Z. X.; Zhao, Y.; Zhang, B.; Yuan, L. X.; Shen, Y.; Guo, Z. Z.; Zhang, Y.; Jiang, J. J.; Huang, Y. H. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode. Adv. Sci. 2019, 6, 1901120.
Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.
Martins, P.; Nunes, J. S.; Hungerford, G.; Miranda, D.; Ferreira, A.; Sencadas, V.; Lanceros-Méndez, S. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys. Lett. A 2009, 373, 177–180.
Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.
Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.
Yang, K.; Chen, L. K.; Ma, J. B.; Lai, C.; Huang, Y. F.; Mi, J. S.; Biao, J.; Zhang, D. F.; Shi, P. R.; Xia, H. Y. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 24668–24675.
Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.
Zhao, Y.; Yang, X. F.; Sun, Q.; Gao, X. J.; Lin, X. T.; Wang, C. H.; Zhao, F. P.; Sun, Y. P.; Adair, K. R.; Li, R. Y. et al. Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Mater. 2018, 15, 415–421.
Wu, M. J.; Song, J. P.; Lei, J. H.; Tang, H. L. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Res. 2024, 17, 1482–1490
Huang, Y. F.; Gu, T.; Rui, G. C.; Shi, P. R.; Fu, W. B.; Chen, L.; Liu, X. T.; Zeng, J. P.; Kang, B. H.; Yan, Z. C. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 2021, 14, 6021–6029.
Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.