AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery

Xinji ZhangYafang ZhangShiyue ZhouJingchuan Dang( )Chenye WangWenjia Wu( )Jingtao Wang
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

A lamellar composite solid electrolyte with β-conformation polyvinylidene fluoride (PVDF) was prepared by confining PVDF in the interlayer channel of –NH2 modified vermiculite (Vr) lamellar framework, which imparts superior room-temperature ionic conductivity and lithium-ion transference number.

Abstract

Solid polymer electrolytes (SPEs) hold great application potential for solid-state lithium metal battery because of the excellent interfacial contact and processibility, but being hampered by the poor room-temperature conductivity (~ 10−7 S·cm−1) and low lithium-ion transference number ( tLi+). Here, a lamellar composite solid electrolyte (Vr-NH2@polyvinylidene fluoride (PVDF) LCSE) with β-conformation PVDF is fabricated by confining PVDF in the interlayer channel of –NH2 modified vermiculite lamellar framework. We demonstrate that the conformation of PVDF can be manipulated by the nanoconfinement effect and the interaction from channel wall. The presence of –NH2 groups could induce the formation of β-conformation PVDF through electrostatic interaction, which serves as continuous and rapid lithium-ion transfer pathway. As a result, a high room-temperature ionic conductivity of 1.77 × 10−4 S·cm−1 is achieved, 1–2 orders of magnitude higher than most SPEs. Furthermore, Vr-NH2@PVDF LCSE shows a high tLi+ of 0.68 because of the high dielectric constant, ~ 3 times of that of PVDF SPE, and surpassing most of reported SPEs. The LiNi0.8Co0.1Mn0.1O2||Li cell assembled by Vr-NH2@PVDF LCSE obtains a discharge specific capacity of 137.1 mAh·g−1 after 150 cycles with a capacity retention rate of 93% at 1 C and 25 °C. This study may pave a new avenue for high-performance SPEs.

Electronic Supplementary Material

Download File(s)
12274_2024_6439_MOESM1_ESM.pdf (3.7 MB)

References

[1]

Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

[2]

Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.

[3]

Lin, X. D.; Zhou, G. D.; Liu, J. P.; Yu, J.; Effat, M. B.; Wu, J. X.; Ciucci, F. Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 2020, 10, 2001235.

[4]

Qiu, J. L.; Liu, X. Y.; Chen, R. S.; Li, Q. H.; Wang, Y.; Chen, P. H.; Gan, L. Y.; Lee, S. J.; Nordlund, D.; Liu, Y. J. et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 2020, 30, 1909392.

[5]

Lu, X.; Wang, Y. M.; Xu, X. Y.; Yan, B. G.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries—Review. Adv. Energy Mater. 2023, 13, 2301746.

[6]

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

[7]

Xiao, Z. L.; Zhou, B. H.; Wang, J. R.; Zuo, C.; He, D.; Xie, X. L.; Xue, Z. G. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 2019, 576, 182–189.

[8]

Liu, H. B.; Sun, Q.; Cheng, J.; Zhang, H. Q.; Xu, X.; Li, Y. Y.; Zeng, Z.; Zhao, Y.; Li, D. P.; Lu, J. Y. et al. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers. Nano Res. 2023, 16, 12727–12737.

[9]

Kumar, M.; Sekhon, S. S. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. J. 2002, 38, 1297–1304.

[10]

Su, Y. T.; Zhang, W. Q.; Lan, J. L.; Sui, G.; Zhang, H. T.; Yang, X. P. Flexible reduced graphene oxide/polyacrylonitrile dielectric nanocomposite films for high-temperature electronics applications. ACS Appl. Nano Mater. 2020, 3, 7005–7015.

[11]

Patil, N.; Oh, J. H.; Khatri, S.; Saed, M. A.; Naraghi, M.; Green, M. J. Radio frequency heating response of polyacrylonitrile (PAN) films and nanofiber mats. ACS Appl. Polym. Mater. 2021, 3, 3125–3130.

[12]

Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.

[13]

Hu, P.; Chai, J. C.; Duan, Y. L.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4, 10070–10083.

[14]

Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

[15]

Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

[16]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[17]

Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

[18]

Zhang, Y.; Zhang, L.; Guo, P.; Zhang, C. Y.; Ren, X. C.; Jiang, Z.; Song, J. J.; Shi, C. Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Res. 2024, 17, 2663–2670

[19]

Lu, G. L.; Zhang, Y. J.; Zhang, J. J.; Du, X. F.; Lv, Z. L.; Du, J. Z.; Zhao, Z. M.; Tang, Y.; Zhao, J. W.; Cui, G. L. Trade-offs between ion-conducting and mechanical properties: The case of polyacrylate electrolytes. Carbon Energy 2023, 5, e287.

[20]

Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.

[21]

Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.

[22]

Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.

[23]

Mi, J. S.; Ma, J. B.; Chen, L. K.; Lai, C.; Yang, K.; Biao, J.; Xia, H. Y.; Song, X.; Lv, W.; Zhong, G. M. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 2022, 48, 375–383.

[24]

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

[25]

Liu, J. F.; Wu, Z. Y.; Stadler, F. J.; Huang, Y. F. High dielectric poly(vinylidene fluoride)-based polymer enables uniform lithium-ion transport in solid-state ionogel electrolytes. Angew. Chem., Int. Ed. 2023, 62, e202300243.

[26]

Huang, Y. F.; Zeng, J. P.; Li, S. F.; Dai, C.; Liu, J. F.; Liu, C.; He, Y. B. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 2023, 13, 2203888.

[27]

Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.

[28]

Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Induced formation of dominating polar phases of poly(vinylidene fluoride): Positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B 2014, 118, 9104–9111.

[29]

Chu, Z. Z.; Zhao, R. J.; Wang, B.; Liu, L.; Ma, Z.; Li, Y. S. Effect of ions on the flow-induced crystallization of poly(vinylidene fluoride). Macromolecules 2021, 54, 3800–3809.

[30]

Yu, S. S.; Zheng, W. T.; Yu, W. X.; Zhang, Y. J.; Jiang, Q.; Zhao, Z. D. Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 2009, 42, 8870–8874.

[31]

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

[32]

Wang, J. T.; Liu, Y. R.; Dang, J. C.; Zhou, G. L.; Wang, Y.; Zhang, Y. F.; Qu, L. B.; Wu, W. J. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978.

[33]

Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2T x MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.

[34]

Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.

[35]

Zheng, Y. F.; Zhou, Z. F.; Jiao, M. Q.; Wang, L.; Zhang, J.; Wu, W. J.; Wang, J. T. Lamellar membrane with orderly aligned glycine molecules for efficient proton conduction. J. Membr. Sci. 2023, 672, 121433.

[36]

Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

[37]

Xiang, J. W.; Cheng, Z. X.; Zhao, Y.; Zhang, B.; Yuan, L. X.; Shen, Y.; Guo, Z. Z.; Zhang, Y.; Jiang, J. J.; Huang, Y. H. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode. Adv. Sci. 2019, 6, 1901120.

[38]

Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

[39]

Martins, P.; Nunes, J. S.; Hungerford, G.; Miranda, D.; Ferreira, A.; Sencadas, V.; Lanceros-Méndez, S. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys. Lett. A 2009, 373, 177–180.

[40]

Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

[41]

Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.

[42]

Yang, K.; Chen, L. K.; Ma, J. B.; Lai, C.; Huang, Y. F.; Mi, J. S.; Biao, J.; Zhang, D. F.; Shi, P. R.; Xia, H. Y. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 24668–24675.

[43]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[44]

Zhao, Y.; Yang, X. F.; Sun, Q.; Gao, X. J.; Lin, X. T.; Wang, C. H.; Zhao, F. P.; Sun, Y. P.; Adair, K. R.; Li, R. Y. et al. Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Mater. 2018, 15, 415–421.

[45]

Wu, M. J.; Song, J. P.; Lei, J. H.; Tang, H. L. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Res. 2024, 17, 1482–1490

[46]

Huang, Y. F.; Gu, T.; Rui, G. C.; Shi, P. R.; Fu, W. B.; Chen, L.; Liu, X. T.; Zeng, J. P.; Kang, B. H.; Yan, Z. C. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 2021, 14, 6021–6029.

[47]

Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.

Nano Research
Pages 5159-5167
Cite this article:
Zhang X, Zhang Y, Zhou S, et al. Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery. Nano Research, 2024, 17(6): 5159-5167. https://doi.org/10.1007/s12274-024-6439-2
Topics:

607

Views

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 05 November 2023
Revised: 19 December 2023
Accepted: 21 December 2023
Published: 01 February 2024
© Tsinghua University Press 2024
Return