Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The application of light-weight current collectors is preferred because of the increased energy density of the batteries. Bearing it in mind, the cathode is designed with self-made paperlike memberane as current collector coupled with another interlayer to enable the high-energy-density lithium-sulfur batteries. Via a facile and green step-by-step methodology, the hybrid membrane is finalized successfully, consisting of reduced graphene oxide sheets covering paper-derived carbon (GPC) bearing Fe@Fe2O3 and Fe1−xS@Fe2O3 core–shell nanoparticles (FeFeO/FeSFeO@GPC). The film works as the current collector and interlayer simultaneously considering the porous and conductive features. As demonstrated by the electrochemical testing, the FeFeO/FeSFeO@GPC hybrid cell exhibits attractive cycling stability and superior rate capability. The cell configuration and structural/composition merits of FeFeO/FeSFeO@GPC film facilitate the faster reaction kinetics, conducive to the improvement of capacity retention. In view of the effective cathode design, the areal sulfur loading is increased to 10.46 mg·cm−2 and a reversible capacity of 6.67 mAh·cm−2 can be retained after 60 cycles at 0.1 C.
Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.
Pan, Z. Y.; Brett, D. J. L.; He, G. J.; Parkin, I. P. Progress and perspectives of organosulfur for lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.
Su, H.; Lu, L. Q.; Yang, M. Z.; Cai, F. P.; Liu, W. L.; Li, M.; Hu, X.; Ren, M. M.; Zhang, X.; Zhou, Z. Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li-S batteries. Chem. Eng. J. 2022, 429, 132167.
Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. N. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.
Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.
Li, Q.; Guo, J. N.; Zhao, J.; Wang, C. C.; Yan, F. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries. Nanoscale 2019, 11, 647–655.
Chadha, U.; Bhardwaj, P.; Padmanaban, S.; Suneel, R. M.; Milton, K.; Subair, N.; Pandey, A.; Khanna, M.; Srivastava, D. Review—Contemporary progresses in carbon-based electrode material in Li-S batteries. J. Electrochem. Soc. 2022, 169, 020530.
He, Z. K.; Wan, T. T.; Luo, Y. H.; Liu, G. H.; Wu, L. L.; Li, F.; Zhang, Z. S.; Li, G. R.; Zhang, Y. G. Three-dimensional structural confinement design of conductive metal oxide for efficient sulfur host in lithium-sulfur batteries. Chem. Eng. J. 2022, 448, 137656.
Hou, Q.; Wang, K. D.; Zheng, W. J.; Li, X. C.; Yu, M.; Jiang, H. L.; Dai, Y.; Chu, F. Y.; Jiang, X. B.; Zhu, D. et al. Eliminating bandgap between Cu-CeO2− x heterointerface enabling fast electron transfer and redox reaction in Li-S batteries. Energy Storage Mater. 2023, 63, 102983.
Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.
Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.
Sun, T. T.; Zhao, X. M.; Li, B.; Shu, H. B.; Luo, L. P.; Xia, W. L.; Chen, M. F.; Zeng, P.; Yang, X. K.; Gao, P. et al. NiMoO4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery. Adv. Funct. Mater. 2021, 31, 2101285.
Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnür, H.; Bigall, N. C. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.
Zeng, P.; Liu, C.; Zhao, X. F.; Yuan, C.; Chen, Y. G.; Lin, H. P.; Zhang, L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020, 14, 11558–11569.
Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.
Miao, Z. Y.; Li, Y. P.; Xiao, X. P.; Sun, Q. Z.; He, B.; Chen, X.; Liao, Y. Q.; Zhang, Y.; Yuan, L. X.; Yan, Z. J.; Li, Z.; Huang, Y. H. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries. Energy Environ. Sci. 2022, 15, 2029–2038.
Yang, H. J.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. S. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid–solid conversion. Angew. Chem., Int. Ed. 2021, 60, 17726–17734.
Sun, Q.; Xi, B. J.; Li, J. Y.; Mao, H. Z.; Ma, X. J.; Liang, J. W.; Feng, J. K.; Xiong, S. L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800595.
Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100970.
Li, J. H.; Li, F. Y.; Pan, J. J.; Pan, J. D.; Liao, J. Y.; Li, H.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Hollow Co3S4 nanocubes interconnected with carbon nanotubes as nanoreactors to accelerate polysulfide conversion for high-performance lithium-sulfur batteries. Ind. Eng. Chem. Res. 2023, 62, 4364–4372.
Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982
Hong, X. D.; Wang, Y.; Liu, Y.; Fu, J. W.; Liang, J.; Dou, S. X. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 2020, 42, 144–168.
Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.
Yuan, J.; Xi, B. J.; Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Multifunctional atomic molybdenum on graphene with distinctive coordination to solve Li and S electrochemistry. Small 2022, 18, 2203947.
Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.
Wang, Y.; Wang, P.; Yuan, J.; Song, N.; An, X. G.; Ma, X. J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Binary sulfiphilic nickel boride on boron-doped graphene with beneficial interfacial charge for accelerated Li-S dynamics. Small 2023, 19, 2208281.
Zhou, X.; Liu, T. T.; Zhao, G. F.; Yang, X. F.; Guo, H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Mater. 2021, 40, 139–149.
Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.
Tao, S.; Zhang, G. K.; Qian, B.; Yang, J.; Chu, S. Q.; Sun, C. C.; Wu, D. J.; Chu, W. S.; Song, L. Spectroscopically unraveling high-valence Ni-Fe catalytic synergism in NiSe2/FeSe2 heterostructure. Appl. Catal. B: Environ. 2023, 330, 122600.
Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.
Ji, L.; Wang, X.; Jia, Y. F.; Hu, Q. L.; Duan, L. M.; Geng, Z. B.; Niu, Z. Q.; Li, W. S.; Liu, J. H.; Zhang, Y. G. et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry. Adv. Funct. Mater. 2020, 30, 1910533.
Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Amal, R.; Wang, S. G.; Cheng, H. M.; Li, F. Polysulfide immobilization and conversion on a conductive polar MoC@MoO x material for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 56–61.
Zhang, C. Y.; Lu, Z. W.; Wang, Y. H.; Dai, Z.; Zhao, H.; Sun, G. Z.; Lan, W.; Pan, X. J.; Zhou, J. Y.; Xie, E. Q. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123734.
Shen, N.; Sun, H. X.; Li, B. Y.; Xi, B. J.; An, X. G.; Li, J. F.; Xiong, S. L. Dual-functional hosts for polysulfides conversion and lithium plating/stripping towards lithium-sulfur full cells. Chem.—Eur. J. 2023, 29, e202203031.
Sun, X. X.; Liu, S. K.; Sun, W. W.; Zheng, C. M. Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries—A mini-review. Chin. Chem. Lett. 2023, 34, 107501.
Qiao, Z. S.; Zhou, F.; Zhang, Q. F.; Pei, F.; Zheng, H. F.; Xu, W. J.; Liu, P. F.; Ma, Y. T.; Xie, Q. S.; Wang, L. S. et al. Chemisorption and electrocatalytic effect from Co x Sn y alloy for high performance lithium sulfur batteries. Energy Storage Mater. 2019, 23, 62–71.
Hou, Y. L.; Zhang, J.; Qin, T.; Zeng, R.; Guan, H. B.; Wang, S. G.; Zhao, D. L. Spindle-like Fe7S8/C anchored on S-doped graphene nanosheets as a superior long-life and high-rate anode for lithium-ion batteries. Appl. Surf. Sci. 2022, 599, 154042.
Huang, W.; Li, S.; Cao, X. Y.; Hou, C. Y.; Zhang, Z.; Feng, J. K.; Ci, L.; Si, P. C.; Chi, Q. J. Metal-organic framework derived iron sulfide-carbon core–shell nanorods as a conversion-type battery material. ACS Sustain. Chem. Eng. 2017, 5, 5039–5048.
Shangguan, E. B.; Guo, L. T.; Li, F.; Wang, Q.; Li, J.; Li, Q. M.; Chang, Z. R.; Yuan, X. Z. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries. J. Power Sources 2016, 327, 187–195.
Liu, X. W.; Li, H. R.; Gao, S. S.; Bai, Z. Y.; Tian, J. Y. Peroxymonosulfate activation by different iron sulfides for bisphenol—A degradation: Performance and mechanism. Sep. Purif. Technol. 2022, 289, 120751.
Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.
Gao, R. H.; Zhang, M. T.; Han, Z. Y.; Xiao, X.; Wu, X. R.; Piao, Z. H.; Lao, Z. J.; Nie, L.; Wang, S. G.; Zhou, G. M. Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries. Adv. Mater. 2024, 36, 2303610.
Han, Z. Y.; Gao, R. H.; Wang, T. S.; Tao, S. Y.; Jia, Y. Y.; Lao, Z. J.; Zhang, M. T.; Zhou, J. Q.; Li, C.; Piao, Z. H. et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 2023, 6, 1073–1086.