AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance

Xu Zhao1,§Xinwei Tang1,§Yunlong Qiao1Shuangshuang Li1Zihang Zhang1Yezi Lu1Mingyang Zhu1Zaiyin Hu2Lijuan Long3Zicheng Wang1( )Tianxi Liu1( )
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
Guizhou Aerospace Wujiang Electro-mechanical Equipment Co., Ltd., No. 20-5, Dalian Road Aerospace Industrial Park, Huichuan District, Zunyi 563000, China
School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China

§ Xu Zhao and Xinwei Tang contributed equally to this work.

Show Author Information

Graphical Abstract

An ultrathin polyimide-based nonwoven fabric is successfully fabricated by in-situ loading of Fe3O4/Ag nanoparticles on the surface of polyimide fiber, and followed by bonding with Cu/Ni mesh. The synergistic assembly promotes the rational construction of hierarchical impedance matching and the formation of electromagnetic resonance and destructive interference, endowing the composite with a low-reflectivity electromagnetic shielding performance. Meanwhile, the thermal insulation of nonwoven fabric and low infrared emissivity of Cu/Ni mesh synergistically facilitate the realization of infrared stealth performance in various environments.

Abstract

Researching and manufacturing materials that possess both electromagnetic interference (EMI) shielding and infrared stealth capabilities is of great significance. Herein, an ultrathin polyimide-based nonwoven fabric with low-reflection EMI shielding/infrared stealth performance is successfully fabricated by in-situ loading of Fe3O4/Ag nanoparticles on the surface of polyimide (PI) fiber (PFA), and followed by bonding with a commercial Cu/Ni mesh. The synergistic assembly of PFA and Cu/Ni promotes the rational construction of hierarchical impedance matching, inducing electromagnetic waves (EMW) to enter the composite and be dissipated as much as possible. Meanwhile, the existence of Cu/Ni mesh on back of PFA facilitates the formation of electromagnetic resonance and destructive interference of EMW reflected from composite, leading to a lower-reflectivity (0.26) EMI shielding performance of 58 dB within 24–40 GHz at a thinner thickness (430 μm). More importantly, the fluffy PFA nonwoven fabric and metal Cu/Ni mesh endow composite with good thermal insulation and low infrared emissivity, resulting in excellent infrared stealth performance in various environments. As a result, such excellent compatibility makes it possible to become a promising defense material to be applied in military tent for preventing electromagnetic and infrared radiation.

Electronic Supplementary Material

Video
6650_ESM2.mp4
6650_ESM3.mp4
Download File(s)
6650_ESM1.pdf (1.6 MB)

References

[1]

Zhang, Y. H.; Shen, G. D.; Lam, S. S.; Ansar, S.; Jung, S. C.; Ge, S. B.; Hou, L.; Fan, Z. K.; Wang, F.; Fan, W. A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 2023, 471, 144679.

[2]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

[3]

He, J.; Han, M. J.; Wen, K.; Liu, C. L.; Zhang, W.; Liu, Y. Q.; Su, X. G.; Zhang, C. R.; Liang, C. B. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 2023, 231, 109799.

[4]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[5]

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

[6]

Wang, Y. Y.; Zhang, F.; Li, N.; Shi, J. F.; Jia, L. C.; Yan, D. X.; Li, Z. M. Carbon-based aerogels and foams for electromagnetic interference shielding: a review. Carbon 2023, 205, 10–26.

[7]

Jia, X. C.; Li, Y.; Shen, B.; Zheng, W. G. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. B. Eng. 2022, 233, 109652.

[8]

Chen, K. X.; Liu, M.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Feng, Y. Z.; Song, P. A. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 2022, 15, 9531–9543.

[9]

Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. B. Eng. 2021, 212, 108690.

[10]

Zhu, M. Y.; Li, G. Y.; Gong, W. B.; Yan, L. F.; Zhang, X. T. Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 2022, 14, 18.

[11]

Feng, S. Y.; Yi, Y.; Chen, B. X.; Deng, P. C.; Zhou, Z. H.; Lu, C. H. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 36060–36070.

[12]

Xu, Y. D.; Yang, Y. Q.; Yan, D. X.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152.

[13]

Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B. Eng​. 2018, 149, 188–197.

[14]

Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2T x /rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

[15]

Zhao, H.; Huang, Y. S.; Han, Y. C.; Yun, J.; Wang, X. L.; Jin, L.; Zheng, Y. P.; Chen, L. X. Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem. Eng. J. 2022, 440, 135919.

[16]

Zhang, Y.; Yang, S. D.; Zhang, Q.; Ma, Z. Y.; Guo, Y. J.; Shi, M.; Wu, H.; Guo, S. Y. Constructing interconnected asymmetric conductive network in TPU fibrous film: achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 2023, 206, 37–44.

[17]

Lv, Z.; Kong, L. J.; Sun, P. Q.; Lin, Y. X.; Wang, Y. Y.; Xiao, C.; Liu, X. L.; Zhang, X.; Zheng, K.; Tian, X. Y. Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 2023, 39, 101565.

[18]

Chen, M. X.; Jiang, X. P.; Huang, J.; Yang, J. B.; Wu, J. G.; Liang, Y. M.; Wang, T. W.; Yan, P. G. Flexible wearable Ti3C2T x composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Opt. Mater. 2024, 12, 2301694.

[19]

Guo, Z. Z.; Ren, P. G.; Yang, F.; Wu, T.; Zhang, L. X.; Chen, Z. Y.; Ren, F. Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth. Compos. B. Eng. 2023, 263, 110863.

[20]

Wen, C. Y.; Zhao, B.; Liu, Y. H.; Xu, C. Y.; Wu, Y. Y.; Cheng, Y. F.; Liu, J. W.; Liu, Y. X.; Yang, Y. X.; Pan, H. G.; Zhang, J. C.; Wu, L. M.; Che, R. C. Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 2023, 33, 2214223.

[21]

Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

[22]

Fang, G.; He, T. A.; Hu, X. X.; Yang, X. M.; Zheng, S. Q.; Xu, G. Y.; Liu, C. Y. Bionic octopus structure inspired stress-driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and de-icing. Chem. Eng. J. 2023, 467, 143266.

[23]

Xie, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Xie, Q.; Xia, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

[24]

Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 116.

[25]

Hu, J. H.; Hu, Y.; Ye, Y. H.; Shen, R. Q. Unique applications of carbon materials in infrared stealth: A review. Chem. Eng. J. 2023, 452, 139147.

[26]

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Xue, X.; Zhang, Z. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 2017, 13, 1701388.

[27]

Li, X. Y.; Wu, M. H.; Chen, J. L.; Zhou, X.; Ren, Q.; Wang, L.; Shen, B.; Zheng, W. G. A facile and large-scale approach to prepare macroscopic segregated polyether block amides/carbon nanostructures composites with a gradient structure for absorption-dominated electromagnetic shielding with ultra-low reflection. Compos. Commun. 2023, 40, 101628.

[28]

Liu, B. W.; Cao, M.; Zhang, Y. Y.; Wang, Y. Z.; Zhao, H. B. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 2022, 15, 7797–7805.

[29]

Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

[30]

Jiang, S. H.; Hou, H. Q.; Agarwal, S.; Greiner, A. Polyimide nanofibers by “Green” electrospinning via aqueous solution for filtration applications. ACS Sustain. Chem. Eng. 2016, 4, 4797–4804.

[31]

Al-Saleh, M. H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746.

[32]

Xu, L. J.; Lin, Z. C.; Chen, Y. J.; Fan, Z.; Pei, X. R.; Yang, S.; Kou, X.; Wang, Y. C.; Zou, Z. Y.; Xi, D.; Yin, P. F.; Su, G. H.; Zhou, M.; Dai, J. W.; Pan, L. J.; Zhao, Y. P. Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects. Carbon 2023, 201, 1090–1114.

[33]

Wang, M. L.; Zhang, S.; Zhou, Z. H.; Zhu, J. L.; Gao, J. F.; Dai, K.; Huang, H. D.; Li, Z. M. Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos. B. Eng. 2021, 224, 109175.

[34]

Chen, X. Z.; Chen, J. L.; Shen, B.; Zheng, W. G. Construction of designable and high-temperature resistant composite foams for tunable electromagnetic shielding. Compos. Commun. 2024, 45, 101780.

[35]

Ruckdeschel, P.; Philipp, A.; Retsch, M. Understanding thermal insulation in porous, particulate materials. Adv. Funct. Mater. 2017, 27, 1702256.

[36]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. C. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

[37]

Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

[38]

Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

[39]

Ryu, S. H.; Park, B.; Han, Y. K.; Kwon, S. J.; Kim, T.; Lamouri, R.; Kim, K. H.; Lee, S. B. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 2022, 10, 4446–4455.

[40]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[41]

Hu, R. C.; Pan, D. S.; Xu, X. W.; Xiao, B.; Wang, H. Tunable natural resonances via synergistic effects of two phases in Fe x (Co y Ni1− y )100− x for multi-band microwave absorption. J. Materiomics 2023, 9, 90–98.

[42]

Im, H. J.; Oh, J. Y.; Ryu, S.; Hong, S. H. The design and fabrication of a multilayered graded GNP/Ni/PMMA nanocomposite for enhanced EMI shielding behavior. RSC Adv. 2019, 9, 11289–11295.

[43]

Fan, W.; Zuo, L. Z.; Zhang, Y. F.; Chen, Y.; Liu, T. X. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos. Sci. Technol. 2018, 156, 186–191.

[44]

Ding, Q. W.; Miao, Y. E.; Liu, T. X. Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process. ACS Appl. Mater. Interfaces 2013, 5, 5617–5622.

[45]

Zhao, X. Y.; Yang, F.; Wang, Z. C.; Ma, P. M.; Dong, W. F.; Hou, H. Q.; Fan, W.; Liu, T. X. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos. B. Eng. 2020, 182, 107624.

[46]

Tang, X. W.; Zhao, X.; Lu, Y. Z.; Li, S. S.; Zhang, Z. H.; Zhu, M. Y.; Yao, K. Q.; Zheng, J. X.; Chen, H. J.; Duan, Y. Q.; Qiao, Y. L.; Wang, Z. C.; Liu, T. X. Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 2024, 480, 148000.

[47]

Huang, Y. P.; Miao, Y. E.; Liu, T. X. Electrospun fibrous membranes for efficient heavy metal removal. J. Appl. Polym. Sci. 2014, 131, 40864.

[48]

Ikeda, S.; Yanagimoto, H.; Akamatsu, K.; Nawafune, H. Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 2007, 17, 889–897.

[49]

Zhang, M. Y.; Liu, L. Z.; Zhang, C. Q. Fabrication and properties of polyimide/aluminum oxide composite films via different alkali etching and ion exchange technique. IOP Conference Series: Mater. Sci. Eng. 2020, 782, 022096.

[50]

Stephans, L. E.; Myles, A.; Thomas, R. R. Kinetics of alkaline hydrolysis of a polyimide surface. Langmuir 2000, 16, 4706.

[51]

Zhou, S. X.; Dong, J.; Li, X. T.; Zhao, X.; Zhang, Q. H. Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 2023, 5, 1892–1904.

[52]

Du, S. N.; Luo, Y.; Liao, Z. F.; Zhang, W.; Li, X. H.; Liang, T. Y.; Zuo, F.; Ding, K. Y. New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent. J. Colloid Interface Sci. 2018, 523, 27–34.

[53]

Liu, H.; Zhu, L. L.; He, Y.; Cheng, B. W. A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating. Mater. Des. 2017, 113, 254–263.

[54]

Yang, Z.; Wu, Y. C.; Wang, J. Q.; Cao, B.; Tang, C. Y. Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 2016, 50, 9543–9550.

[55]

Song, Y. R.; Jian, M. L.; Qiao, L. L.; Zhao, Z. Y.; Yang, Y. J.; Jiao, T. F.; Zhang, Q. R. Efficient removal and recovery of ag from wastewater using charged polystyrene-polydopamine nanocoatings and their sustainable catalytic application in 4-nitrophenol reduction. ACS Appl. Mater. Interfaces 2024, 16, 5834–5846.

[56]

Maw, S. S.; Watanabe, S.; Miyahara, M. T. Flow synthesis of silver nanoshells using a microreactor. Chem. Eng. J. 2019, 374, 674–683.

[57]

Xie, S.; Ji, Z. J.; Zhu, L. C.; Zhang, J. J.; Cao, Y. X.; Chen, J. H.; Liu, R. R.; Wang, J. Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 2020, 27, 100963.

[58]
Ade, P. A. R.; Pisano, G.; Tucker, C.; Weaver, S. A review of metal mesh filters. Proceedings of SPIE, in press, DOI: 10.1117/12.673162.
[59]

Panwar, R.; Agarwala, V.; Singh, D. A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceram. Int. 2015, 41, 2923–2930.

[60]

Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

[61]

Wang, Y. F.; Niu, J. R.; Jin, X.; Qian, X. M.; Xiao, C. F.; Wang, W. Y. Molecularly resonant metamaterials for broad-band electromagnetic stealth. Adv. Sci. 2023, 10, 2301170.

[62]

Mai, T.; Guo, W. Y.; Wang, P. L.; Chen, L.; Qi, M. Y.; Liu, Q.; Ding, Y.; Ma, M. G. Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2023, 464, 142517.

[63]

Singh, A. P.; Garg, P.; Alam, F.; Singh, K.; Mathur, R. B.; Tandon, R. P.; Chandra, A.; Dhawan, S. K. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 2012, 50, 3868–3875.

[64]

Lan, C. T.; Zou, L. H.; Wang, N.; Qiu, Y. P.; Ma, Y. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J. Colloid Interface Sci. 2021, 590, 467–475.

[65]

Yin, J.; Zhang, J. X.; Zhang, S. D.; Liu, C.; Yu, X. L.; Chen, L. Q.; Song, Y. P.; Han, S.; Xi, M.; Zhang, C. L.; Li, N.; Wang, Z. Y. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2021, 421, 129763.

[66]

Singh, P.; Del R. T.; Palasyuk, A.; Mudryk, Y. Physics-Informed machine-learning prediction of curie temperatures and its promise for guiding the discovery of functional magnetic materials. Chem. Mater. 2023, 35, 6304–6312.

Nano Research
Pages 6700-6712
Cite this article:
Zhao X, Tang X, Qiao Y, et al. Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance. Nano Research, 2024, 17(7): 6700-6712. https://doi.org/10.1007/s12274-024-6650-1
Topics:

430

Views

3

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 11 January 2024
Revised: 21 March 2024
Accepted: 24 March 2024
Published: 02 May 2024
© Tsinghua University Press 2024
Return