Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation. While chemical methods have been explored extensively for this purpose, plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks. However, the conventional plasma approach introduces complexities, leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment. In our pursuit of heterostructures with optimized oxygen evolution reaction (OER) behavior, we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni3N–NiO heterostructure (hNiNO). By meticulously controlling the surface heating process during plasma processing, such approach allows for the streamlined fabrication of hNiNO nano-frameworks. The resulting nano-framework exhibits outstanding catalytic performance, as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm−2, in an alkaline environment. This stands in stark contrast to the performance of NiO-covered Ni3N fabricated using the conventional plasma method (sNiNO). Operando plasma diagnostics, coupled with numerical simulations, further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni3N–NiO nanostructure, highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.
Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem. 2021, 133, 21745–21752.
Cao, W. W.; Shen, Q.; Men, D. D.; Ouyang, B.; Sun, Y. Q.; Xu, K. Phase engineering of iron group transition metal selenides for water splitting. Mater. Chem. Front. 2023, 7, 4865–4879.
Luo, Q.; Lu, C. C.; Liu, L. R.; Zhu, M. Y. A review on the synthesis of transition metal nitride nanostructures and their energy related applications. Green Energy Environ. 2023, 8, 406–437.
Chen, P. R.; Ye, J. S.; Wang, H.; Ouyang, L. Z.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833.
Tian, D.; Denny, S. R.; Li, K. Z.; Wang, H.; Kattel, S.; Chen, J. G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338–12376.
Yang, H. M.; Weng, C. C.; Wang, H. Y.; Yuan, Z. Y. Transition metal nitride-based materials as efficient electrocatalysts: Design strategies and prospective applications. Coord. Chem. Rev. 2023, 496, 215410.
Kwon, T.; Jun, M.; Joo, J.; Lee, K. Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. J. Mater. Chem. A 2019, 7, 5090–5110.
Ahsan, A.; He, T. W.; Noveron, J. C.; Reuter, K.; Puente-Santiago, A. R.; Luque, R. Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev. 2022, 51, 812–828.
Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F. J.; Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245.
Guo, H.; Wu, A. P.; Xie, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.
Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K. et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.
Liu, J. L.; Zhang, J. H.; Zhou, H. C.; Liu, B. W.; Dong, H. F.; Lin, X. L.; Qin, Y. L. Lignin-derived carbon-supported MoC–FeNi heterostructure as efficient electrocatalysts for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 629, 822–831.
Zhao, Z. X.; Yi, Z. L.; Duan, Y. R.; Pathak, R.; Cheng, X. Q.; Wang, Y. Z.; Elam, J. W.; Wang, X. M. Regulating the d–p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries. Chem. Eng. J. 2023, 463, 142397.
Dong, X.; Yan, H. J.; Jiao, Y. Q.; Guo, D. Z.; Wu, A. P.; Yang, G. C.; Shi, X.; Tian, C. G.; Fu, H. G. 3D hierarchical V–Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 15823–15830.
Fan, H. F.; Chen, W.; Chen, G. L.; Huang, J.; Song, C. S.; Du, Y.; Li, C. R.; Ostrikov, K. Plasma-heteroatom-doped Ni–V–Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst. Appl. Catal. B: Environ. 2020, 268, 118440.
Kong, X.; Gao, Q. L.; Bu, S. Y.; Xu, Z.; Shen, D.; Liu, B.; Lee, C. S.; Zhang, W. J. Plasma-assisted synthesis of nickel–cobalt nitride-oxide hybrids for high-efficiency electrochemical hydrogen evolution. Mater. Today Energy 2021, 21, 100784.
He, L. Q.; Zhang, W. B.; Mo, Q. J.; Huang, W. J.; Yang, L. C.; Gao, Q. S. Molybdenum carbide–oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 3544–3548.
Tang, Y. H.; Dong, L.; Wu, H. B.; Yu, X. Y. Tungstate-modulated Ni/Ni(OH)2 interface for efficient hydrogen evolution reaction in neutral media. J. Mater. Chem. A 2021, 9, 1456–1462.
Ouyang, B.; Zhang, Y. Q.; Wang, X.; Deng, Y. L.; Liu, F.; Fang, Z.; Rawat, R. S.; Kan, E. J. Facet control of nickel nitride nano-framework for efficient hydrogen evolution electrocatalysis via auxiliary cooling assisted plasma engineering. Small 2022, 18, 2204634.
Ouyang, B.; Sun, C.; Wang, X.; Xu, J.; Cao, Y. Q.; Wu, F.; Rawat, R. S.; Zhu, J. P.; Kan, E. J. Structural control of heterostructured Co3N–Co nano-corals for boosting electrocatalytic hydrogen evolution based on insulator-confined plasma engineering. Chem. Eng. J. 2023, 466, 143211.
Ouyang, B.; Zhang, Y. Q.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Nitrogen-plasma-activated hierarchical nickel nitride nanocorals for energy applications. Small 2017, 13, 1604265.
Qiao, F. Y.; Wang, X.; Sun, C.; Chen, Y. Y.; Xu, J.; Ouyang, B.; Zhu, J. P.; Kan, E. J. Why does plasma serve as a facile strategy in engineering Ni–NiO heterostructure for enhanced electrocatalytic behavior. J. Mater. Sci. 2022, 57, 16437–16447.
Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.
Kate, R. S.; Khalate, S. A.; Deokate, R. J. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. J. Alloys Compd. 2018, 734, 89–111.
Wang, X.; Li, Q. X.; Shi, P. H.; Fan, J. C.; Min, Y. L.; Xu, Q. J. Nickel nitride particles supported on 2D activated graphene–black phosphorus heterostructure: An efficient electrocatalyst for the oxygen evolution reaction. Small 2019, 15, 1901530.
Mironova-Ulmane, N.; Kuzmin, A.; Steins, I.; Grabis, J.; Sildos, I.; Pärs, M. Raman scattering in nanosized nickel oxide NiO. J. Phys.: Conf. Ser. 2007, 93, 012039.
Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.
Kreider, M. E.; Gallo, A.; Back, S.; Liu, Y. Z.; Siahrostami, S.; Nordlund, D.; Sinclair, R.; Nørskov, J. K.; King, L. A.; Jaramillo, T. F. Precious metal-free nickel nitride catalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 26863–26871.
Lin, F.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C. Nitrogen-doped nickel oxide thin films for enhanced electrochromic applications. Thin Solid Films 2013, 527, 26–30.
Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.
Guo, Y. Y.; Huang, Q.; Ding, J. Y.; Zhong, L.; Li, T. T.; Pan, J. Q.; Hu, Y.; Qian, J. J.; Huang, S. M. CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. Int. J. Hydrogen Energy 2021, 46, 22268–22276.
Guan, Y. N.; Liu, G. H.; Li, J. D.; Wang, Y. J.; Zhang, Z. S. Surface-engineered cobalt nitride composite as efficient bifunctional oxygen electrocatalyst. Nanotechnology 2019, 30, 495406.
Li, R. Q.; Hu, P. F.; Miao, M.; Li, Y. L.; Jiang, X. F.; Wu, Q.; Meng, Z.; Hu, Z.; Bando, Y.; Wang, X. B. CoO-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. J. Mater. Chem. A 2018, 6, 24767–24772.
Yan, Z.; Qi, H.; Bai, X.; Huang, K. K.; Chen, Y. R.; Wang, Q. Mn doping of cobalt oxynitride coupled with N-rGO nanosheets hybrid as a highly efficient electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochim. Acta 2018, 283, 548–559.
Saad, A.; Cheng, Z. X.; Zhang, X. Y.; Liu, S. Q.; Shen, H. J.; Thomas, T.; Wang, J. C.; Yang, M. H. Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis. Adv. Mater. Interfaces 2019, 6, 1900960.
Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.
Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom Co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.
Cho, S. H.; Yoon, K. R.; Shin, K.; Jung, J. W.; Kim, C.; Cheong, J. Y.; Youn, D. Y.; Song, S. W.; Henkelman, G.; Kim, I. D. Synergistic coupling of metallic cobalt nitride nanofibers and IrO x nanoparticle catalysts for stable oxygen evolution. Chem. Mater. 2018, 30, 5941–5950.
Walter, C.; Menezes, P. W.; Orthmann, S.; Schuch, J.; Connor, P.; Kaiser, B.; Lerch, M.; Driess, M. A molecular approach to manganese nitride acting as a high performance electrocatalyst in the oxygen evolution reaction. Angew. Chem. 2018, 130, 706–710.
Guo, H. P.; Ruan, B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018, 8, 9686–9696.
Song, J. N.; Yu, D. S.; Wu, X. L.; Xie, D. Y.; Sun, Y.; Vishniakov, P.; Hu, F.; Li, L. L.; Li, C. S.; Maximov, M. Y. et al. Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn-air battery. Chem. Eng. J. 2022, 437, 135281.
Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.
Liu, T. T.; Li, M.; Bo, X. J.; Zhou, M. Comparison study toward the influence of the second metals doping on the oxygen evolution activity of cobalt nitrides. ACS Sustain. Chem. Eng. 2018, 6, 11457–11465.
Zhang, R.; Huang, J.; Chen, G. L.; Chen, W.; Song, C. S.; Li, C. R.; Ostrikov, K. In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Appl. Catal. B: Environ. 2019, 254, 414–423.
Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.
Zhang, X. R.; Sun, C. Y.; Xu, S. S.; Huang, M. R.; Wen, Y.; Shi, X. R. DFT-assisted rational design of CoM x P/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 2022, 15, 8897–8907.
Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.
Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.
Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 2007, 111, 404–410.
Yang, X. D.; Ouyang, B.; Zhao, L.; Shen, Q.; Chen, G. Z.; Sun, Y. Q.; Li, C. C.; Xu, K. Ultrathin Rh nanosheets with rich grain boundaries for efficient hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 2023, 145, 27010–27021.
Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. J.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective carbon–CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.
Fang, C. Y.; Wang, X.; Zhang, Q.; Zhang, X. H.; Shi, C. L.; Xu, J. C.; Yang, M. Y. Coordination environments build up and tune a superior synergistic “genome” toward novel trifunctional (TM-N x O4− x )@g-C16N3-H3: High-throughput inspection of ultra-high activity for water splitting and oxygen reduction reactions. Nano Res. 2024, 17, 2337–2351.
Yang, X. D.; Ouyang, B.; Shen, P. Q.; Sun, Y. Q.; Yang, Y. S.; Gao, Y. N.; Kan, E. J.; Li, C. C.; Xu, K.; Xie, Y. Ru colloidosome catalysts for the hydrogen oxidation reaction in alkaline media. J. Am. Chem. Soc. 2022, 144, 11138–11147.
Sarani, A.; Nikiforov, A. Y.; Leys, C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas 2010, 17, 063504.