AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Covalent triazine frameworks materials for photo- and electro-catalysis

Aoji Liang1,§Wenbin Li1,§Anbai Li1Hui Peng1Guofu Ma1( )Lei Zhu2( )Ziqiang Lei1Yuxi Xu3( )
Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
School of Engineering, Westlake University, Hangzhou 310024, China

§ Aoji Liang and Wenbin Li contributed equally to this work.

Show Author Information

Graphical Abstract

Covalent triazine skeletons (CTFs) have attracted much attention as an attractive photocatalyst and electrocatalyst due to their unique structural features. The paper reviews the synthesis methods of CTFs and their applications in photo- and electro-catalysis, and also discusses the prospects and challenges of preparing highly crystalline CTFs and designing CTFs with excellent photo- and electro-catalytic properties.

Abstract

Covalent triazine frameworks (CTFs) are a class of unique two-dimensional nitrogen-rich triazine framework with adjustable chemical and electronic structures, rich porosity, good stability and excellent semiconductivity, which enable great various applications in efficient gas/molecular adsorption and separation, energy storage and conversion, especially photo- and electro-catalysis. Different synthesis strategies strongly affect the morphology of CTFs and play an important role in their structure and properties. In this concept, we provide a comprehensive and systematic review of the synthesis methods such as ionothermal synthesis, phosphorus pentoxide catalytic method, polycondensation and ultra-strong acid catalyzed method, and applications of CTFs in photo- and electro-catalysis. Finally we offer some insights into the future development progress of CTFs materials for catalytic applications.

References

[1]

Qian, Z. F.; Wang, Z. J.; Zhang, K. A. I. Covalent triazine frameworks as emerging heterogeneous photocatalysts. Chem. Mater. 2021, 33, 1909–1926.

[2]

Liu, M. Y.; Guo, L. P.; Jin, S. B.; Tan, B. E. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172.

[3]

Sun, R. X.; Tan, B. E. Covalent triazine frameworks (CTFs): Synthesis, crystallization, and photocatalytic water splitting. Chem.—Eur. J. 2023, 29, e202203077.

[4]

Haldar, S.; Waentig, A. L.; Ramuglia, A. R.; Bhauriyal, P.; Khan, A. H.; Pastoetter, D. L.; Isaacs, M. A.; De, A.; Brunner, E.; Wang, M. C. et al. Covalent trapping of cyclic-polysulfides in perfluorinated vinylene-linked frameworks for designing lithium-organosulfide batteries. ACS Energy Lett. 2023, 8, 5098–5106.

[5]

Shao, J. L.; Zhou, Z. F.; Chen, X.; Tian, R. Y.; Zhang, Z. H.; Li, G. C. Pseudo-covalent triazine frameworks for superior Li-S batteries. Chem. Eng. J. 2024, 481, 148209.

[6]

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

[7]
Liu, G.; Liu, S. B.; Lai, C.; Qin, L.; Zhang, M. M.; Li, Y. X.; Xu, M. Y.; Ma, D. S.; Xu, F. H.; Liu, S. Y. et al. Strategies for enhancing the photocatalytic and electrocatalytic efficiency of covalent triazine frameworks for CO2 reduction. Small, in press, DOI: 10.1002/smll.202307853.
[8]

Li, Y. X.; Lai, C.; Liu, S. B.; Fu, Y. K.; Qin, L.; Xu, M. Y.; Ma, D. S.; Zhou, X. R.; Xu. F. H.; Liu, H. D. et al. Metallic active-site engineering: A bridge between covalent triazine frameworks and high-performance catalysts. J. Mater. Chem. A 2023, 11, 2070–2091.

[9]

Yang, S.; Gao, Z.; Hu, Z. Y.; Pan, C. Y.; Yuan, J. Y.; Tam, K. C.; Liu, Y. N.; Yu, G. P.; Tang, J. T. Regulating the tautomerization in covalent organic frameworks for efficient sacrificial agent-free photocatalytic H2O2 production. Macromolecules 2024, 57, 2039–2047.

[10]

Niu, Q.; Mi, L. H.; Chen, W.; Li, Q. J.; Zhong, S. H.; Yu, Y.; Li, L. Y. Review of covalent organic frameworks for single‐site photocatalysis and electrocatalysis. Chin. J. Catal. 2023, 50, 45–82.

[11]

Xing, Z. P.; Zhang, J. Q.; Cui, J. Y.; Yin, J. W.; Zhao, T. Y.; Kuang, J. Y.; Xiu, Z. Y.; Wan, N.; Zhou, W. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B: Envrion. Energy 2018, 225, 452–467.

[12]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[13]

Abednatanzi, S.; Derakhshandeh, P. G.; Tack, P.; Muniz-Miranda, F.; Liu, Y. Y.; Everaert, J.; Meledina, M.; Bussche, F. V.; Vincze, L.; Stevens, C. V. et al. Elucidating the promotional effect of a covalent triazine framework in aerobic oxidation. Appl. Catal. B: Envrion. Energy 2020, 269, 118769.

[14]

Zhen, J. H.; Shen, J. C.; Sun, T.; Wang, C. X.; Lyu, P. B.; Xu, Y. X. Direct synthesis of ultrathin crystalline two-dimensional triazine polymers from aldoximes. CCS Chem. 2024, 6, 932–940.

[15]

Liang, Z. Z.; Shen, R. C.; Ng, Y. H.; Fu, Y.; Ma, T. Y.; Zhang, P.; Li, Y. J.; Li, X. Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catal. 2022, 2, 2157–2228.

[16]

Hasija, V.; Patial, S.; Raizada, P.; Khan, A. A. P.; Asiri, A. M.; Van Le, Q.; Nguyen, V. H.; Singh, P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord. Chem. Rev. 2022, 452, 214298.

[17]

Liu, S. S.; Wang, M. F.; He, Y. Z.; Cheng, Q. Y.; Qian, T.; Yan, C. L. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord. Chem. Rev. 2023, 475, 214882.

[18]

Xiang, Z. H.; Cao, D. P.; Huang, L.; Shui, J. L.; Wang, M.; Dai, L. M. Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Adv. Mater. 2014, 26, 3315–3320.

[19]

Nowsheenah, F.; Abu, T.; Athar, A. H. Facile synthesis of a nitrogen-rich covalent organic framework for the efficient capture of iodine. J. Mater. Chem. A 2024, 12, 10539–10553.

[20]

Patial, S.; Soni, V.; Kumar, A.; Raizada, P.; Ahamad, T.; Pham, X. M.; Le, Q. V.; Nguyen, V. H.; Thakur, S.; Singh, P. Rational design, structure properties, and synthesis strategies of dual-pore covalent organic frameworks (COFs) for potent applications: A review. Environ. Res. 2023, 218, 114982.

[21]

Dong, B.; Wang, D. Y.; Wang, W. J. Post-functionalization of hydroxyl-appended covalent triazine framework via borrowing hydrogen strategy for effective CO2 capture. Micropor. Mesopor. Mat. 2020, 292, 109765.

[22]

Liu, Y. B.; Wu, H.; Wang, Q. Strategies to improve the photocatalytic performance of covalent triazine frameworks. J. Mater. Chem. A 2023, 11, 21470–21497.

[23]

Liao, L. F.; Li, M. Y.; Yin, Y. L.; Chen, J.; Zhong, Q. T.; Du, R. X.; Liu, S. L.; He, Y. M.; Fu, W. J.; Zeng, F. Advances in the synthesis of covalent triazine frameworks. ACS Omega 2023, 8, 4527–4542.

[24]

Kuhn, P.; Forget, A.; Hartmann, J.; Thomas, A.; Antonietti, M. Template-free tuning of nanopores in carbonaceous polymers through ionothermal synthesis. Adv. Mater. 2009, 21, 897–901.

[25]

Kuhn, P.; Forget, A.; Su, D. S.; Thomas, A.; Antonietti, M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: Dynamic reorganization of porous polymer networks. J. Am. Chem. Soc. 2008, 130, 13333–13337.

[26]

Kuhn, P.; Thomas, A.; Antonietti, M. Toward tailorable porous organic polymer networks: A high-temperature dynamic polymerization scheme based on aromatic nitriles. Macromolecules 2009, 42, 319–326.

[27]

Cui, K.; Tang, X. L.; Xu, X. P.; Kou, M. C.; Lyu, P. B.; Xu, Y. X. Crystalline dual-porous covalent triazine frameworks as a new platform for efficient electrocatalysis. Angew. Chem., Int. Ed. 2024, 63, e202317664.

[28]

Yu, S. Y.; Mahmood, J.; Noh, H. J.; Seo, J. M.; Jung, S. M.; Shin, S. H.; Im, Y. K.; Jeon, I. Y.; Baek, J. B. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew. Chem., Int. Ed. 2018, 57, 8438–8442.

[29]

Sun, R. X.; Wang, X. Y.; Wang, X. P.; Tan, B. Three-dimensional crystalline covalent triazine frameworks via a polycondensation approach. Angew. Chem., Int. Ed. 2022, 61, e202117668.

[30]

Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24, 2357–2361.

[31]

Yang, Z. Z.; Chen, H.; Wang, S.; Guo, W.; Wang, T.; Suo, X.; Jiang, D. E.; Zhu, X.; Popovs, I.; Dai, S. Transformation strategy for highly crystalline covalent triazine frameworks: From staggered AB to eclipsed AA stacking. J. Am. Chem. Soc. 2020, 142, 6856–6860.

[32]

Xiao, L. Y.; Qi, L. L.; Sun, J. R.; Husile, A.; Zhang, S. Y.; Wang, Z. L.; Guan, J. Q. Structural regulation of covalent organic frameworks for advanced electrocatalysis. Nano Energy 2024, 120, 109155.

[33]
Qi, G. D.; Ba, D.; Zhang, Y. J.; Jiang, X. Q.; Chen, Z. H.; Yang, M. M.; Cao, J. M.; Dong, W. W.; Zhao, J.; Li, D. S. et al. Constructing an asymmetric covalent triazine framework to boost the efficiency and selectivity of visible-light-driven CO2 photoreduction. Adv. Sci., in press, DOI: 10.1002/advs.202402645.
[34]

Li, S.; Wu, M. F.; Guo, T.; Zheng, L. L.; Wang, D. K.; Mu, Y.; Xing, Q. J.; Zou, J. P. Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework. Appl. Catal. B: Environ. 2020, 272, 118989.

[35]

Chen, M. H.; Xiong, J.; Li, X. Y.; Shi, Q.; Li, T.; Feng, Y. Q.; Zhang, B. In-situ doping strategy for improving the photocatalytic hydrogen evolution performance of covalent triazine frameworks. Sci. China Chem. 2023, 66, 2363–2370

[36]

Jana, A.; Maity, A.; Sarkar, A.; Show, B.; Bhobe, P. A.; Bhunia, A. Single-site cobalt catalyst embedded in a covalent triazine-based framework (CTF) for photocatalytic CO2 reduction. J. Mater. Chem. A 2024, 12, 5244–5253.

[37]

Sun, R. X.; Hu, X. L.; Shu, C.; Zheng, L. R.; Wang, S. Y.; Wang, X. Y.; Tan, B. E. Anchoring single Co sites on bipyridine-based covalent triazine framework for efficient photocatalytic oxygen evolution. Chin. J. Catal. 2023, 55, 159–170.

[38]

Chen, H. M.; Gardner, A. M.; Lin, G. A.; Zhao, W.; Bahri, M.; Browning, N. D.; Sprick, R. S.; Li, X. B.; Xu, X. X.; Cooper, A. I. Covalent triazine-based frameworks with cobalt-loading for visible light-driven photocatalytic water oxidation. Catal. Sci. Technol. 2022, 12, 5442–5452.

[39]

Li, Z. L.; Li, T. C.; Miao, J. M.; Zhao, C. X.; Jing, Y.; Han, F. Y.; Zhang, K.; Yang, X. F. Amide-functionalized covalent triazine framework for enhanced photocatalytic hydrogen evolution. Sci. China Mater. 2023, 66, 2290–2298.

[40]

Wang, X. Y.; Fu, Z. W.; Zheng, L. R.; Zhao, C. X.; Wang, X.; Chong, S. Y.; McBride, F.; Raval, R.; Bilton, M.; Liu, L. J. et al. Covalent organic framework nanosheets embedding single cobalt sites for photocatalytic reduction of carbon dioxide. Chem. Mater. 2020, 32, 9107–9114.

[41]

Zhang, S. Q.; Wang, S. Y.; Guo, L. P.; Chen, H.; Tan, B. E.; Jin, S. B. An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 2020, 8, 192–200.

[42]

Kosugi, K.; Akatsuka, C.; Iwami, H.; Kondo, M.; Masaoka, S. Iron-complex-based supramolecular framework catalyst for visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2023, 145, 10451–10457.

[43]
Zhong, Y. H.; Wang, Y.; Zhao, S. Y.; Xie, Z. X.; Chung, L. H.; Liao, W. M.; Yu, L.; Wong, W. Y.; He, J. Regulating the electronic configuration of Ni sites by breaking symmetry of Ni-porphyrin to facilitate CO2 photocatalytic reduction. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316199.
[44]

Sun, R. X.; Tan, B. E. Covalent triazine frameworks (CTFs) for photocatalytic applications. Chem. Res. Chin. Univ. 2022, 38, 310–324.

[45]

Huang, W.; He, Q.; Hu, Y. P.; Li, Y. G. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2019, 58, 8676–8680.

[46]

Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1700005.

[47]

Lan, Z. A.; Chi, X.; Wu, M.; Zhang, X. R.; Chen, X.; Zhang, G. G.; Wang, X. C. Molecular design of covalent triazine frameworks with anisotropic charge migration for photocatalytic hydrogen production. Small 2022, 18, 2200129.

[48]

Buyukcakir, O.; Je, S. H.; Talapaneni, S. N.; Kim, D.; Coskun, A. Charged covalent triazine frameworks for CO2 capture and conversion. ACS Appl. Mater. Interfaces 2017, 9, 7209–7216.

[49]

Zhu, H.; Lin, W. J.; Li, Q.; Hu, Y.; Guo, S. Y.; Wang, C. M.; Yan, F. Bipyridinium-based ionic covalent triazine frameworks for CO2, SO2, and NO capture. ACS Appl. Mater. Interfaces 2020, 12, 8614–8621.

[50]

Zhang, G. P.; Li, X. X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; Lu, J. M. Internal electric field and adsorption effect synergistically boost carbon dioxide conversion on cadmium sulfide@covalent triazine frameworks core–shell photocatalyst. Adv. Funct. Mater. 2023, 33, 2308553.

[51]

Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl. Catal. B: Environ. 2021, 289, 120039.

[52]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[53]

Wang, L. B.; Fei, X. G.; Zhang, L. Y.; Yu, J. G.; Cheng, B.; Ma, Y. H. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. J. Mater. Sci. Technol. 2022, 112, 1–10.

[54]

Hu, J. D.; Yang, T. Y.; Yang, X. G.; Qu, J. F.; Cai, Y. H.; Li, C. M. Highly selective and efficient solar-light-driven CO2 conversion with an ambient-stable 2D/2D Co2P@BP/g-C3N4 heterojunction. Small 2022, 18, 2105376.

[55]

Wang, L.; Wang, L.; Xu, Y. K.; Sun, G. X.; Nie, W. C.; Liu, L. H.; Kong, D. B.; Pan, Y.; Zhang, Y. H.; Wang, H. et al. Schottky junction and D-A1-A2 system dual regulation of covalent triazine frameworks for highly efficient CO2 photoreduction. Adv. Mater. 2024, 36, 2309376.

[56]

Wisser, F. M.; Duguet, M.; Perrinet, Q.; Ghosh, A. C.; Alves-Favaro, M.; Mohr, Y.; Lorentz, C.; Quadrelli, E. A.; Palkovits, R.; Farrusseng, D. et al. Molecular porous photosystems tailored for long-term photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 5116–5122.

[57]

Huang, G. C.; Lin, G. Y.; Niu, Q.; Bi, J. H.; Wu, L. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. J. Mater. Sci. Technol. 2022, 116, 41–49.

[58]

Huang, G. C.; Niu, Q.; He, Y. X.; Tian, J. J.; Gao, M. B.; Li, C. Y.; An, N.; Bi, J. H.; Zhang, J. W. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 2022, 15, 8001–8009.

[59]

Hu, X. L.; Zheng, L. R.; Wang, S. Y.; Wang, X. Y.; Tan. B. Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO2. Chem. Commun. 2022, 58, 8121–8124.

[60]

Yi, J. D.; Li, Q. X.; Chi, S. Y.; Huang, Y. B.; Cao, R. Boron-doped covalent triazine framework for efficient CO2 electroreduction. Chem. Res. Chin. Univ. 2022, 38, 141–146.

[61]

Suo, X.; Zhang, F. T.; Yang, Z. Z.; Chen, H.; Wang, T.; Wang, Z. Y.; Kobayashi, T.; Do-Thanh, C. L.; Maltsev, D.; Liu, Z. M. et al. Highly perfluorinated covalent triazine frameworks derived from a low-temperature ionothermal approach towards enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 25688–25694.

[62]

Wang, C. X.; Zhang, H. L.; Luo, W. J.; Sun, T.; Xu, Y. X. Ultrathin crystalline covalent-triazine-framework nanosheets with electron donor groups for synergistically enhanced photocatalytic water splitting. Angew. Chem., Int. Ed. 2021, 60, 25381–25390.

[63]

Gao, P. P.; Wu, C. B.; Wang, S. Y.; Zheng, G. F.; Han, Q. Efficient photosynthesis of hydrogen peroxide by triazole-modified covalent triazine framework nanosheets. J. Colloid Interface Sci. 2023, 650, 40–46.

[64]

Huang, G. C.; Niu, Q.; Zhang, J. W.; Huang, H. M.; Chen, Q. S.; Bi, J. H.; Wu, L. Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 427, 131018.

[65]

Tao, Y.; Yang, D. H.; Kong, H. Y.; Wang, T. X.; Li, Z. H.; Ding, X. S.; Han, B. H. Covalent triazine polymer derived porous carbon with high porosity and nitrogen content for bifunctional oxygen catalysis in zinc-air battery. Appl. Catal. B: Environ. 2023, 339, 123088.

[66]

Li, N. N.; Tang, R. Z.; Su, Y. Z.; Lu, C. B.; Chen, Z. M.; Sun, J.; Lv, Y. Q.; Han, S.; Yang, C. Q.; Zhuang, X. D. Isometric covalent triazine framework-derived porous carbons as metal-free electrocatalysts for the oxygen reduction reaction. ChemSusChem 2023, 16, e202201937.

[67]

Zheng, Y.; Chen, S.; Zhang, K. A. I.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Liu, T. X. Ultrasound-triggered assembly of covalent triazine framework for synthesizing heteroatom-doped carbon nanoflowers boosting metal-free bifunctional electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 13328–13337.

[68]

Allwyn, N.; Ambrose, B.; Kathiresan, M.; Sathish, M. Self-sacrificial templated nanoarchitectonics of nitrogen-doped carbon derived from viologen-based covalent triazine polymer: An oxygen reduction electrocatalyst in zinc-air batteries. ACS Appl. Energy Mater. 2023, 6, 11408–11419.

[69]

Pan, Y.; Xin, Y. P.; Li, Y. H.; Xu, Z.; Tang, C.; Liu, X.; Yin, Y. C.; Zhang, J. C.; Xu, F. G.; Li, C. et al. Nitrogen-doped carbon cubosomes as an efficient electrocatalyst with high accessibility of internal active sites. ACS Nano 2023, 17, 23850–23860.

[70]

Song, K. S.; Talapaneni, S. N.; Ashirov, T.; Coskun, A. Molten salt templated synthesis of covalent isocyanurate frameworks with tunable morphology and high CO2 uptake capacity. ACS Appl. Mater. Interfaces 2021, 13, 26102–26108.

[71]

Sun, L.; Yang, M.; Guo, H.; Zhang, T. T.; Wu, N.; Wang, M. Y.; Yang, F.; Zhang, J. Y.; Yang, W. COOH-MWCNT connected COF and chemical activated CTF as a novel electrochemical sensing platform for simultaneous detection of acetaminophen and p-aminophenol. Colloids Surf. A Physicochem. Eng. Aspects 2022, 647, 129092.

[72]

Sun, L.; Guo, H.; Pan, Z. L.; Liu, B. Q.; Wu, N.; Liu, Y. S.; Lu, Z. Y.; Wei, X. Q.; Yang, W. Design of NiCo2O4 nanoflowers decorated sulfurbridged covalent triazine frameworks nanocomposites for electrochemical simultaneous detection of acetaminophen and 4-aminophenol. Microchem. J. 2022, 182, 107879.

[73]

Zhu, X. J.; Dai, J. L.; Li, L. G.; Wu, Z. X.; Chen, S. W. N. S-codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nanoscale 2019, 11, 21302–21310

[74]

Li, M. J.; Lv, M. H.; Zheng, Y.; Zhu, M. M.; Feng, Q. C.; Guan, J. Y.; Yu, X. H.; Shen, Y.; Hou, J. H.; Lu, Y. et al. Bimetallic-coordinated covalent triazine framework-derived FeNi alloy nanoparticle-decorated coral-like nanocarbons for oxygen electrocatalysis. ACS Appl. Mater. Interfaces 2024, 16, 633–642.

[75]

Zhu, Y. Z.; Chen, X. F.; Liu, J.; Zhang, J. F.; Xu, D. Y.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Rational design of Fe/N/S-doped nanoporous carbon catalysts from covalent triazine frameworks for efficient oxygen reduction. ChemSusChem 2018, 11, 2402–2409.

[76]

Zheng, Y.; Chen, S.; Zhang, K. A. I.; Guan, J. Y.; Yu, X. H.; Peng, W.; Song, H.; Zhu, J. X.; Xu, J. S.; Fan, X. S. et al. Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. J. Colloid Interface Sci. 2022, 608, 3168–3177.

[77]

Jena, H. S.; Krishnaraj, C.; Satpathy, B. K.; Rawat, K. S.; Leus, K.; Veerapandian, S.; Morent, R.; De Geyter, N.; Van Speybroeck, V.; Pradhan, D. et al. Phosphorus covalent triazine framework-based nanomaterials for electrocatalytic hydrogen evolution reaction. ACS Appl. Nano Mater. 2023, 6, 22684–22692.

[78]

Zhang, J.; Xu, Y. P.; Lan, M. W.; Wang, X. D.; Fu, N.; Yang, Z. L. Heteroatom-doped carbon materials derived from covalent triazine framework@MOFs for the oxygen reduction reaction. Dalton Trans. 2022, 51, 14482–14490.

[79]

Khan, R.; Chakraborty, J.; Rawat, K. S.; Morent, R.; De Geyter, N.; Van Speybroeck, V.; Van Der Voort, P. Super-oxidizing covalent triazine framework electrocatalyst for two-electron water oxidation to H2O2. Angew. Chem., Int. Ed. 2023, 62, e202313836.

[80]

Huo, L. P.; Lv, M. H.; Li, M. J.; Ni, X. P.; Guan, J. Y.; Liu, J.; Mei, S. X.; Yang, Y. Q.; Zhu, M. M.; Feng, Q. C. et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis. Adv. Mater. 2024, 36, 2312868.

Nano Research
Pages 7830-7839
Cite this article:
Liang A, Li W, Li A, et al. Covalent triazine frameworks materials for photo- and electro-catalysis. Nano Research, 2024, 17(9): 7830-7839. https://doi.org/10.1007/s12274-024-6779-y
Topics:

529

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 April 2024
Revised: 21 May 2024
Accepted: 22 May 2024
Published: 29 June 2024
© Tsinghua University Press 2024
Return