AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Advancing microarray fabrication: One-pot synthesis and high-resolution patterning of UV-crosslinkable perovskite quantum dots

Linfeng Yuan1,3,5Dejian Chen1,2,5( )Kun He1,4,5Jiamin Xu1,3,5Kunyuan Xu1,3,5Jie Hu1,5Sisi Liang1,5Haomiao Zhu1,2,3,5( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
University of Chinese Academy of Sciences, Beijing 100049, China
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
Show Author Information

Graphical Abstract

One-pot synthesized ultraviolet (UV)-crosslinkable CsPbX3 perovskite quantum dots (PQDs) demonstrate enhanced stability, yielding an outstanding photoluminescence quantum yield (PL QY) of up to 91%. This method facilitates the straightforward fabrication of high-resolution, colorful PQDs microarrays via inkjet printing and photolithography, with UV cross-linking ensuring uniform distribution and alleviating coffee ring effects.

Abstract

The development of highly efficient, solution-processable, and environmentally stable perovskite quantum dots (PQDs) is crucial for their accurate high-resolution patterning and subsequently enabling the practical deployment of PQD based emissive display devices. This study presents an innovative strategy for integrating all-inorganic PQDs and ultraviolet (UV) crosslinkable acrylate polymer at a structural and functional level. The achievement is accomplished by meticulous design and one-pot synthesis of UV-crosslinkable CsPbX3 (X = Cl, Br, I) PQDs solution, which exhibit outstanding environmental stability. Leveraging the solution-processable characteristics of the resulting UV-crosslinkable PQDs, precise patterning of high-resolution (2 µm, 7608 pixels·in.−1) and colorful PQDs microarrays can be readily achieved through inkjet printing and high-throughput photolithography (~ 2 µm in pitch line/space patterning). The UV cross-linked process guarantees a homogeneous distribution of PQDs, effectively mitigating coffee ring effect and improving the overall quality of stereoscopic microarrays. The photo-cured PQDs film, which undergoes free radical photopolymerization, displays an impressive photoluminescence quantum yield (PL QY) of up to 89.2%, reaching 98% of the value observed in the solution state. The approach outlined in this research is both cost-effective and pragmatic, exhibiting tremendous promise for diverse system-level integrated optoelectronic devices, such as ultra-high-resolution micro-light-emitting device (micro-LED) displays.

Electronic Supplementary Material

Download File(s)
6784_ESM.pdf (2.5 MB)

References

[1]

Park, S. Y.; Lee, S.; Yang, J.; Kang, M. S. Patterning quantum dots via photolithography: A review. Adv. Mater. 2023, 35, 2300546.

[2]

Wu, Y. F.; Ma, J. S.; Su, P.; Zhang, L. J.; Xia, B. Z. Full-color realization of micro-LED displays. Nanomaterials 2020, 10, 2482.

[3]

Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.

[4]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 2022, 16, 505–511.

[5]

de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[6]

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

[7]

Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D. H.; Park, J.; Lee, S. C.; Park, S. H. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694.

[8]

Ling, Y. C.; Yuan, Z.; Tian, Y.; Wang, X.; Wang, J. C.; Xin, Y.; Hanson, K.; Ma, B. W.; Gao, H. W. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 2016, 28, 305–311.

[9]

Luo, C. Z.; Zheng, Z. S.; Ding, Y. H.; Ren, Z. W.; Shi, H. F.; Ji, H. F.; Zhou, X.; Chen, Y. High-resolution, highly transparent, and efficient quantum dot light-emitting diodes. Adv. Mater. 2023, 35, 2303329.

[10]

Yang, X.; Yan, Z. J.; Zhong, C. M.; Jia, H.; Chen, G. L.; Fan, X. T.; Wang, S. L.; Wu, T. Z.; Lin, Y.; Chen, Z. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot Inks. Adv. Opt. Mater. 2023, 11, 2202673.

[11]

Onses, M. S.; Sutanto, E.; Ferreira, P. M.; Alleyne, A. G.; Rogers, J. A. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 2015, 11, 4237–4266.

[12]

Li, H. G.; Liu, N.; Shao, Z. L.; Li, H. Y.; Xiao, L.; Bian, J.; Li, J. H.; Tan, Z. F.; Zhu, M. H.; Duan, Y. Q. et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J. Mater. Chem. C 2019, 7, 14867–14873.

[13]

Zhu, M. H.; Duan, Y. Q.; Liu, N.; Li, H. G.; Li, J. H.; Du, P. P.; Tan, Z. F.; Niu, G. D.; Gao, L.; Huang, Y. A. et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 2019, 29, 1903294.

[14]

Wang, Q. L.; Zhang, G. N.; Zhang, H. Y.; Duan, Y. Q.; Yin, Z. P.; Huang, Y. A. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 2021, 31, 2100857.

[15]

Yakunin, S.; Chaaban, J.; Benin, B. M.; Cherniukh, I.; Bernasconi, C.; Landuyt, A.; Shynkarenko, Y.; Bolat, S.; Hofer, C.; Romanyuk, Y. E. et al. Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nat. Commun. 2021, 12, 981.

[16]

Oh, B. M.; Jeong, Y.; Zheng, J.; Cho, N. Y.; Song, M.; Choi, J. W.; Kim, J. H. Simple one-pot synthesis and high-resolution patterning of perovskite quantum dots using a photocurable ligand. Chem. Commun. 2021, 57, 12824–12827.

[17]

Liu, D.; Weng, K. K.; Lu, S. Y.; Li, F.; Abudukeremu, H.; Zhang, L. P.; Yang, Y. C.; Hou, J. Y.; Qiu, H. W.; Fu, Z. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 2022, 8, eabm8433.

[18]

Jeon, S.; Lee, S. Y.; Kim, S. K.; Kim, W.; Park, T.; Bang, J.; Ahn, J.; Woo, H. K.; Chae, J. Y.; Paik, T. et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 2020, 8, 2000501.

[19]

Harwell, J.; Burch, J.; Fikouras, A.; Gather, M. C.; Di Falco, A.; Samuel, I. D. W. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 2019, 13, 3823–3829.

[20]

Sung, C. H.; Huang, S. D.; Kumar, G.; Lin, W. C.; Lin, C. C.; Kuo, H. C.; Chen, F. C. Highly luminescent perovskite quantum dots for light-emitting devices: Photopatternable perovskite quantum dot-polymer nanocomposites. J. Mater. Chem. C 2022, 10, 15941–15947.

[21]

Liu, X.; Li, J. J.; Zhang, P. P.; Lu, W. T.; Yang, G. L.; Zhong, H. Z.; Zhao, Y. J. Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization. Nano Res. 2022, 15, 7681–7687.

[22]

Xiong, J.; Dai, Z. J.; Zhan, S. P.; Zhang, X. W.; Xue, X. G.; Liu, W. Z.; Zhang, Z. L.; Huang, Y.; Dai, Q. L.; Zhang, J. Multifunctional passivation strategy based on tetraoctylammonium bromide for efficient inverted perovskite solar cells. Nano Energy 2021, 84, 105882.

[23]

Zang, J. Q.; Cai, L.; Zou, Y. T.; Li, Y.; Bai, G. L.; Hong, Z. W.; Chen, Z. W.; Jiang, C. H.; Song, Y. H.; Zeng, X. L. et al. Self-healing perovskite films enabled by fluorinated cross-linked network targeting flexible light-emitting diode. Adv. Opt. Mater. 2022, 10, 2200566.

[24]

Geng, Y. H.; Guo, J. Z.; Wang, H. Q.; Ling, S. D.; Chen, Z.; Chen, S.; Xu, J. H. Large-scale production of ligand-engineered robust lead halide perovskite nanocrystals by a droplet-based microreactor system. Small 2022, 18, 2200740.

[25]

Yassitepe, E.; Yang, Z. Y.; Voznyy, O.; Kim, Y.; Walters, G.; Castañeda, J. A.; Kanjanaboos, P.; Yuan, M. J.; Gong, X. W.; Fan, F. J. et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2016, 26, 8757–8763.

[26]

Yu, X. W.; Liu, K. K.; Wang, B. L.; Zhang, H. Y.; Qi, Y. Y.; Yu, J. H. Time-dependent polychrome stereoscopic luminescence triggered by resonance energy transfer between carbon dots-in-zeolite composites and fluorescence quantum dots. Adv. Mater. 2023, 35, 2208735.

[27]

Liu, Y. Q.; Cai, L.; Xu, Y. F.; Li, J. N.; Qin, Y. S.; Song, T.; Wang, L.; Li, Y. Y.; Ono, L. K.; Qi, Y. B. et al. In-situ passivation perovskite targeting efficient light-emitting diodes via spontaneously formed silica network. Nano Energy 2020, 78, 105134

[28]

Wu, Z. F.; Jiang, M. W.; Liu, Z. H.; Jamshaid, A.; Ono, L. K.; Qi, Y. B. Highly efficient perovskite solar cells enabled by multiple ligand passivation. Adv. Energy Mater. 2020, 10, 1903696.

[29]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[30]

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

[31]

Jang, J.; Kim, Y. H.; Park, S.; Yoo, D.; Cho, H.; Jang, J.; Jeong, H. B.; Lee, H.; Yuk, J. M.; Park, C. B. et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years. Adv. Mater. 2021, 33, 2005255.

[32]

Zhou, H. Y.; Park, J.; Lee, Y.; Park, J. M.; Kim, J. H.; Kim, J. S.; Lee, H. D.; Jo, S. H.; Cai, X.; Li, L. Z. et al. Water passivation of perovskite nanocrystals enables air-stable intrinsically stretchable color-conversion layers for stretchable displays. Adv. Mater. 2020, 32, 2001989.

[33]

Liu, M. M.; Wan, Q.; Wang, H. M.; Carulli, F.; Sun, X. C.; Zheng, W. L.; Kong, L.; Zhang, Q.; Zhang, C. Y.; Zhang, Q. G. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 2021, 15, 379–385.

[34]

Shi, S. C.; Bai, W. H.; Xuan, T. T.; Zhou, T. L.; Dong, G. Y.; Xie, R. J. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 2021, 5, 2000889

[35]

Huang Chen, S. W.; Shen, C. C.; Wu, T. Z.; Liao, Z. Y.; Chen, L. F.; Zhou, J. R.; Lee, C. F.; Lin, C. H.; Lin, C. C.; Sher, C. W. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res. 2019, 7, 416–422.

[36]

Chen, S. W. H.; Huang, Y. M.; Singh, K. J.; Hsu, Y. C.; Liou, F. J.; Song, J.; Choi, J.; Lee, P. T.; Lin, C. C.; Chen, Z. et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photon. Res. 2020, 8, 630–636.

Nano Research
Pages 8600-8609
Cite this article:
Yuan L, Chen D, He K, et al. Advancing microarray fabrication: One-pot synthesis and high-resolution patterning of UV-crosslinkable perovskite quantum dots. Nano Research, 2024, 17(9): 8600-8609. https://doi.org/10.1007/s12274-024-6784-1
Topics:

441

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 21 March 2024
Revised: 16 May 2024
Accepted: 25 May 2024
Published: 08 July 2024
© Tsinghua University Press 2024
Return