AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Synthesis and modification of nanowires anchored on electrodes for electrochemical and electrophysical applications

Feiyang Mo1Zhitao Chen2Nian Liu2( )Xing Xie1( )
School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

This paper reviews the anchored nanowires developed in the past decade for the applications of energy storage, electrocatalysis, and electric field treatment. This paper emphasizes on different synthesis and modification strategies of these anchored nanowires, including their fundamentals, advantages, and drawbacks, which provides valuable insights into the fabrication of anchored nanowires.

Abstract

The integration of nanowires onto electrode surfaces marks a significant advancement over traditional electrode materials, conferring upon nanowire-modified electrodes a vast array of applications within electrochemical and electrophysical domains. The nanowires used for electrode modification can be catalogized into two distinct types: anchored nanowires and free-standing nanowires. A critical advantage of anchored nanowires lies in their enhanced electrical connectivity with the substrate, which reduces electrode resistance and facilitates charge transport. Furthermore, the anchorage of nanowires onto electrodes provides additional mechanical support, bolstering the structural stability of the nanowire assembly. Here, we review the development of anchored nanowires designed for applications in energy storage, electrocatalysis, and electric field treatment (EFT) over the past decade. We focus on the synthesis and modification strategies employed for anchored nanowires, culminating in the evaluation of these fabrication and enhancement techniques. Through this analysis, we aim to furnish comprehensive insights into the preparation of anchored nanowires, guiding the selection of appropriate fabrication processes and subsequent functional modifications.

References

[1]

Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

[2]

Cao, G. Z. Nanostructures & Nanomaterials: Synthesis, Properties & Applications; Imperial College Press: London, 2004.

[3]

Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th Anniversary article: Semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184

[4]

Kuchibhatla, S. V. N. T.; Karakoti, A. S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–913.

[5]

Lieber, C. M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commun. 1998, 107, 607–616.

[6]

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

[7]

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.

[8]

Agarwal, R.; Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A 2006, 85, 209–215.

[9]

Mai, L.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

[10]

Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109.

[11]

Zhou, J. F.; Yu, C.; Wang, T.; Xie, X. Development of nanowire-modified electrodes applied in the locally enhanced electric field treatment (LEEFT) for water disinfection. J. Mater. Chem. A 2020, 8, 12262–12277.

[12]

Ahn, J.; Hwang, H.; Jeong, S.; Moon, J. Metal-nanowire-electrode-based perovskite solar cells: Challenging issues and new opportunities. Adv. Energy Mater. 2017, 7, 1602751.

[13]

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

[14]

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.

[15]

Zhao, L. L.; Cao, Q.; Wang, A. L.; Duan, J. Z.; Zhou, W. J.; Sang, Y. H.; Liu, H. Iron oxide embedded titania nanowires—An active and stable electrocatalyst for oxygen evolution in acidic media. Nano Energy 2018, 45, 118–126.

[16]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[17]

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

[18]

Kotnik, T.; Bobanović, F.; Miklavčič, D. Sensitivity of transmembrane voltage induced by applied electric fields-a theoretical analysis. Bioelectrochem. Bioenerg. 1997, 43, 285–291.

[19]

Kotnik, T.; Frey, W.; Sack, M.; Haberl Meglič, S.; Peterka, M.; Miklavčič, D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015, 33, 480–488.

[20]

Wang, T.; Brown, D. K.; Xie, X. Operando investigation of locally enhanced electric field treatment (LEEFT) harnessing lightning-rod effect for rapid bacteria inactivation. Nano Lett. 2022, 22, 860–867.

[21]

Wang, T.; Xie, X. Nanosecond bacteria inactivation realized by locally enhanced electric field treatment. Nat. Water 2023, 1, 104–112

[22]

Huo, W. C.; Zhang, X. Y.; Liu, X. Y.; Liu, H.; Zhu, Y. M.; Zhang, Y.; Ji, J. Y.; Dong, F.; Zhang, Y. X. Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage. Electrochim. Acta 2020, 334, 135635

[23]

Cui, S. G.; Chen, S. G.; Wang, H. Y.; Dong, L. T.; Wang, S. T. N-doped carbon-coated Cu7S4 nanowires on Cu foam supports for water disinfection. ACS Appl. Nano Mater. 2021, 4, 6124–6134.

[24]

Poudel, M. B.; Lohani, P. C.; Acharya, D.; Kandel, D. R.; Kim, A. A.; Yoo, D. J. MOF derived hierarchical ZnNiCo-LDH on vapor solid phase grown Cu x O nanowire array as high energy density asymmetric supercapacitors. J. Energy Storage 2023, 72, 108220.

[25]

Chebrolu, V. T.; Balakrishnan, B.; Cho, I.; Bak, J. S.; Kim, H. J. A unique core–shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Dalton Trans. 2020, 49, 14432–14444.

[26]

Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.

[27]

Peng, K. Q.; Wang, X.; Li, L.; Hu, Y.; Lee, S. T. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013, 8, 75–97.

[28]

Leveau, L.; Laïk, B.; Pereira-Ramos, J. P.; Gohier, A.; Tran-Van, P.; Cojocaru, C. S. Cycling strategies for optimizing silicon nanowires performance as negative electrode for lithium battery. Electrochim. Acta 2015, 157, 218–224.

[29]

Sandu, G.; Coulombier, M.; Kumar, V.; Kassa, H. G.; Avram, I.; Ye, R.; Stopin, A.; Bonifazi, D.; Gohy, J. F.; Leclère, P. et al. Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Sci. Rep. 2018, 8, 9794

[30]

Wang, B.; Ryu, J.; Choi, S.; Zhang, X. H.; Pribat, D.; Li, X. L.; Zhi, L. J.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315

[31]

Zhang, L.; Zhang, G. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 2013, 25, 2589–2593.

[32]

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

[33]

Hu, J. K.; Sun, C. F.; Gillette, E.; Gui, Z.; Wang, Y. H.; Lee, S. B. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. Nanoscale 2016, 8, 12958–12969.

[34]

Yuan, Z. Q.; Si, L. L.; Wei, D. H.; Hu, L.; Zhu, Y. C.; Li, X. N.; Qian, Y. T. Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 2014, 118, 5091–5101.

[35]

Wang, J. X.; Zhang, Q. B.; Li, X. H.; Zhang, B.; Mai, L.; Zhang, K. L. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 2015, 12, 437–446.

[36]

Xia, H.; Wan, Y. H.; Assenmacher, W.; Mader, W.; Yuan, G. L.; Lu, L. Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Mater. 2014, 6, e126–e126.

[37]

Cao, J. H.; Guo, S. W.; Yan, R. Y.; Zhang, C.; Guo, J. L.; Zheng, P. Carbon-coated single-crystalline LiMn2O4 nanowires synthesized by high-temperature solid-state reaction with high capacity for Li-ion battery. J. Alloys Compd. 2018, 741, 1–6.

[38]

An, Q.; Wei, Q. L.; Zhang, P. F.; Sheng, J. Z.; Hercule, K. M.; Lv, F.; Wang, Q. Q.; Wei, X. J.; Mai, L. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 2015, 11, 2654–2660.

[39]

Zhang, Y.; Lai, J. Y.; Gong, Y. D.; Hu, Y. M.; Liu, J.; Sun, C. W.; Wang, Z. L. A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode. ACS Appl. Mater. Interfaces 2016, 8, 34309–34316.

[40]

Hua, K.; Li, X. J.; Fang, D.; Yi, J. H.; Bao, R.; Luo, Z. P. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery. Appl. Surf. Sci. 2018, 447, 610–616.

[41]

Shao, Q.; Lu, K. Y.; Huang, X. Q. Platinum group nanowires for efficient electrocatalysis. Small Methods 2019, 3, 1800545.

[42]

Kim, M. J.; Cruz, M. A.; Yang, F. C.; Wiley, B. J. Accelerating electrochemistry with metal nanowires. Curr. Opin. Electrochem. 2019, 16, 19–27.

[43]

Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

[44]

Raciti, D.; Mao, M.; Park, J. H.; Wang, C. Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts. Catal. Sci. Technol. 2018, 8, 2364–2369.

[45]

Raciti, D.; Livi, K. J.; Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015, 15, 6829–6835.

[46]

Wang, Y. X.; Niu, C. L.; Zhu, Y. C.; He, D.; Huang, W. X. Tunable syngas formation from electrochemical CO2 reduction on copper nanowire arrays. ACS Appl. Energy Mater. 2020, 3, 9841–9847.

[47]

Li, H. Y.; Wu, X. S.; Tao, X. L.; Lu, Y.; Wang, Y. W. Direct synthesis of ultrathin Pt nanowire arrays as catalysts for methanol oxidation. Small 2020, 16, 2001135.

[48]

Meng, W.; He, H. Y.; Yang, L.; Jiang, Q. G.; Yuliarto, B.; Yamauchi, Y.; Xu, X. T.; Huang, H. J. 1D-2D hybridization: Nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts. Chem. Eng. J. 2022, 450, 137932.

[49]

Liu, J.; Liu, Z.; Wang, H. Z.; Liu, B.; Zhao, N. Q.; Zhong, C.; Hu, W. B. Designing nanoporous coral-like Pt nanowires architecture for methanol and ammonia oxidation reactions. Adv. Funct. Mater. 2022, 32, 2110702.

[50]

Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.

[51]

Wang, P.; Zhang, Y. Y.; Shi, R.; Wang, Z. H. Trimetallic PtPdCu nanowires as an electrocatalyst for methanol and formic acid oxidation. New J. Chem. 2018, 42, 19083–19089.

[52]

Zhu, M.; Zhang, Y. Y.; Shi, R.; Wang, Z. H. Ultrathin vein-like iridium-tin nanowires with abundant oxidized tin as high-performance ethanol oxidation electrocatalysts. Small 2017, 13, 1701295.

[53]

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based Quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.

[54]

Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

[55]

Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

[56]

Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y. et al. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175.

[57]

Ji, L.; Wang, Z. C.; Wang, H.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Hierarchical CoTe2 nanowire array: An effective oxygen evolution catalyst in alkaline media. ACS Sustain. Chem. Eng. 2018, 6, 4481–4485.

[58]

Yu, J.; Cao, Q.; Feng, B.; Li, C. L.; Liu, J. Y.; Clark, J. K.; Delaunay, J. J. Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 2018, 11, 4323–4332.

[59]

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

[60]

Ren, Y. C.; Li, Z. R.; Deng, B.; Ye, C.; Zhang, L. C.; Wang, Y.; Li, T. S.; Liu, Q.; Cui, G. W.; Asiri, A. M. et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586.

[61]

Liu, Z. J.; Qi, J.; Liu, M. X.; Zhang, S. M.; Fan, Q. K.; Liu, H. P.; Liu, K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem., Int. Ed. 2018, 57, 11678–11682

[62]

Lv, H.; Chen, X.; Xu, D. D.; Hu, Y. C.; Zheng, H. Q.; Suib, S. L.; Liu, B. Ultrathin PdPt bimetallic nanowires with enhanced electrocatalytic performance for hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 238, 525–532.

[63]

Zhang, L. Q.; Liu, L. C.; Wang, H. D.; Shen, H. X.; Cheng, Q.; Yan, C.; Park, S. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity. Nanomaterials 2017, 7, 103.

[64]

Wei, S. T.; Qi, K.; Jin, Z.; Cao, J. S.; Zheng, W. T.; Chen, H.; Cui, X. Q. One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 2016, 1, 1367–1373.

[65]

Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L. B.; Diao, G. W. et al. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2021, 31, 2106147.

[66]

Liang, Z.; Hou, H. L.; Fang, Z.; Gao, F. M.; Wang, L.; Chen, D.; Yang, W. Y. Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2019, 11, 19167–19175.

[67]

Zhou, J.; Hou, H. L.; Fang, Z.; Gao, F. M.; Wang, L.; Chen, D.; Yang, W. Y. Locally enhanced electric field treatment (LEEFT) for water disinfection. Front. Environ. Sci. Eng. 2020, 14, 78.

[68]

Tian, J. J.; Feng, H. Q.; Yan, L.; Yu, M.; Ouyang, H.; Li, H.; Jiang, W.; Jin, Y. M.; Zhu, G.; Li, Z. et al. A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy 2017, 36, 241–249.

[69]

Pi, S. Y.; Wang, Y.; Lu, Y. W.; Liu, G. L.; Wang, D. L.; Wu, H. M.; Chen, D.; Liu, H. Fabrication of polypyrrole nanowire arrays-modified electrode for point-of-use water disinfection via low-voltage electroporation. Water Res. 2021, 207, 117825.

[70]

Dong, L. T.; Cui, S. G.; Sun, X.; Liu, J. H.; Lv, G. J.; Chen, S. G. Copper sulfides (Cu7S4) nanowires with Ag anchored in N-doped carbon layers optimize interfacial charge transfer for rapid water sterilization. J. Colloid Interface Sci. 2024, 654, 1209–1219.

[71]

Liu, C.; Xie, X.; Zhao, W. T.; Yao, J.; Kong, D. S.; Boehm, A. B.; Cui, Y. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano Lett. 2014, 14, 5603–5608.

[72]

Huo, Z. Y.; Xie, X.; Yu, T.; Lu, Y.; Feng, C.; Hu, H. Y. Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection. Environ. Sci. Technol. 2016, 50, 7641–7649.

[73]

Wang, S. T.; Wang, W.; Yue, L. F.; Cui, S. G.; Wang, H. Y.; Wang, C. Y.; Chen, S. G. Hierarchical Cu2O nanowires covered by silver nanoparticles-doped carbon layer supported on Cu foam for rapid and efficient water disinfection with lower voltage. Chem. Eng. J. 2020, 382, 122855.

[74]

Chen, W. S.; Jiang, J. Y.; Zhang, W. L.; Wang, T.; Zhou, J. F.; Huang, C. H.; Xie, X. Silver nanowire-modified filter with controllable silver ion release for point-of-use disinfection. Environ. Sci. Technol. 2019, 53, 7504–7512.

[75]

Yu, D. M.; Liu, L. F.; Ding, B.; Yu, J. Y.; Si, Y. Spider-Web-Inspired SiO2/Ag nanofibrous aerogels with superelastic and conductive networks for electroporation water disinfection. Chem. Eng. J. 2023, 461, 141908.

[76]

Kempa, T. J.; Day, R. W.; Kim, S. K.; Park, H. G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.

[77]

Liu, X. X.; Chao, D. L.; Su, D. P.; Liu, S. K.; Chen, L.; Chi, C. X.; Lin, J. Y.; Shen, Z. X.; Zhao, J. P.; Mai, L. et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 2017, 37, 108–117.

[78]

Kim, J.; Kim, M. S.; Lee, Y.; Kim, S. Y.; Sung, Y. E.; Ko, S. H. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 17340–17347.

[79]

Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Influences of gold, binder and electrolyte on silicon nanowire performance in li-ion batteries. J. Phys. Chem. C 2012, 116, 18079–18086.

[80]

Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

[81]

Lee, S.; Jang, J.; Park, T.; Park, Y. M.; Park, J. S.; Kim, Y. K.; Lee, H. K.; Jeon, E. C.; Lee, D. K.; Ahn, B. et al. Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl. Mater. Interfaces 2020, 12, 6169–6175.

[82]

Hong, X. S.; Wen, J. J.; Xiong, X. H.; Hu, Y. Y. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection. Chemosphere 2016, 154, 537–545.

[83]

Jiang, X. C.; Herricks, T.; Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338.

[84]

Xiang, L. J.; Guo, J.; Wu, C. H.; Cai, M. L.; Zhou, X. R.; Zhang, N. L. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. J. Mater. Res. 2018, 33, 2264–2280.

[85]

Huang, L. S.; Yang, S. G.; Li, T.; Gu, B. X.; Du, Y. W.; Lu, Y. N.; Shi, S. Z. Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 2004, 260, 130–135.

[86]

Hsieh, C. T.; Chen, J. M.; Lin, H. H.; Shih, H. C. Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 2003, 82, 3316–3318.

[87]

Kumar, A.; Srivastava, A. K.; Tiwari, P.; Nandedkar, R. V. The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys. Condens. Matter 2004, 16, 8531–8543.

[88]

Kaur, M.; Muthe, K. P.; Despande, S. K.; Choudhury, S.; Singh, J. B.; Verma, N.; Gupta, S. K.; Yakhmi, J. V. Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 2006, 289, 670–675.

[89]

Gonçalves, A. M. B.; Campos, L. C.; Ferlauto, A. S.; Lacerda, R. G. On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 2009, 106, 034303.

[90]

Cao, F.; Jia, S. F.; Zheng, H.; Zhao, L. L.; Liu, H. H.; Li, L.; Zhao, L. G.; Hu, Y. M.; Gu, H. S.; Wang, J. B. Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Mater. 2017, 1, 053401.

[91]

Košiček, M.; Zavašnik, J.; Baranov, O.; Šetina Batič, B.; Cvelbar, U. Understanding the growth of copper oxide nanowires and layers by thermal oxidation over a broad temperature range at atmospheric pressure. Cryst. Growth Des. 2022, 22, 6656–6666.

[92]

Zhang, Y. J.; Wang, N. L.; Gao, S. P.; He, R. R.; Miao, S.; Liu, J.; Zhu, J.; Zhang, X. A simple method to synthesize nanowires. Chem. Mater. 2002, 14, 3564–3568.

[93]

Xu, C. H.; Yang, X. L.; Shi, S. Q.; Liu, Y.; Surya, C.; Woo, C. Effects of local gas-flow field on synthesis of oxide nanowires during thermal oxidation. Appl. Phys. Lett. 2008, 92, 253117.

[94]

Huo, Z. Y.; Liu, H.; Yu, C. C. L.; Wu, Y. H.; Hu, H. Y.; Xie, X. Elevating the stability of nanowire electrodes by thin polydopamine coating for low-voltage electroporation-disinfection of pathogens in water. Chem. Eng. J. 2019, 369, 1005–1013.

[95]

Zhou, J. F.; Wang, T.; Chen, W. S.; Lin, B. C.; Xie, X. Emerging investigator series: Locally enhanced electric field treatment (LEEFT) with nanowire-modified electrodes for water disinfection in pipes. Environ. Sci. Nano 2020, 7, 397–403.

[96]

Hussain, I.; Ansari, M. Z.; Lamiel, C.; Hussain, T.; Javed, M. S.; Kaewmaraya, T.; Ahmad, M.; Qin, N.; Zhang, K. L. In situ grown heterostructure based on MOF-derived carbon containing n-type Zn-In-S and dry-oxidative p-type CuO as pseudocapacitive electrode materials. ACS Energy Lett. 2023, 8, 1887–1895.

[97]

Hussain, I.; Iqbal, S.; Hussain, T.; Chen, Y. T.; Ahmad, M.; Javed, M. S.; Alfantazi, A.; Zhang, K. L. An oriented Ni-Co-MOF anchored on solution-free 1D CuO: A p-n heterojunction for supercapacitive energy storage. J. Mater. Chem. A 2021, 9, 17790–17800.

[98]

Han, L. Y.; Li, H. Y.; Yang, L.; Liu, Y. L.; Liu, S. T. Rational design of NiZn x @CuO nanoarray architectures for electrocatalytic oxidation of methanol. ACS Appl. Mater. Interfaces 2023, 15, 9392–9400.

[99]

Fu, Y. Y.; Chen, J.; Zhang, H. Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 2001, 350, 491–494.

[100]

Wang, D. W.; Zhu, B.; He, X.; Zhu, Z.; Hutchins, G.; Xu, P.; Wang, W. N. Iron oxide nanowire-based filter for inactivation of airborne bacteria. Environ. Sci. Nano 2018, 5, 1096–1106.

[101]

Dlugosch, T.; Chnani, A.; Muralidhar, P.; Schirmer, A.; Biskupek, J.; Strehle, S. Thermal oxidation synthesis of crystalline iron-oxide nanowires on low-cost steel substrates for solar water splitting. Semicond. Sci. Technol. 2017, 32, 084001.

[102]

Yin, Y.; Zhang, G.; Xia, Y. Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. 3.0.CO;2-U">Adv. Funct. Mater. 2002, 12, 293–298.

[103]

Liu, Y.; Zheng, C.; Wang, W.; Yin, C.; Wang, G. Synthesis and characterization of rutile SnO2 nanorods. 3.0.CO;2-Q">Adv. Mater. 2001, 13, 1883–1887

[104]

Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861

[105]

Tuzluca, F. N.; Yesilbag, Y. O.; Ertugrul, M. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials. Appl. Surf. Sci. 2018, 427, 956–964.

[106]

Gohier, A.; Laïk, B.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Tran-Van, P. Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries. J. Power Sources 2012, 203, 135–139.

[107]

Tuzluca, F. N.; Yesilbag, Y. O.; Ertugrul, M. Investigation of temperature, catalyst thickness and substrate effects in In2O3 nanostructures. J. Phys. Chem. Solids 2017, 111, 439–446.

[108]

Storan, D.; Ahad, S. A.; Forde, R.; Kilian, S.; Adegoke, T. E.; Kennedy, T.; Geaney, H.; Ryan, K. M. Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Mater. Today Energy 2022, 27, 101030.

[109]

Collins, G. A.; Kilian, S.; Geaney, H.; Ryan, K. M. A nanowire nest structure comprising copper silicide and silicon nanowires for lithium-ion battery anodes with high areal loading. Small 2021, 17, 2102333.

[110]

Tuzluca, F. N.; Yesilbag, Y. O.; Ertugrul, M. Synthesis of ultra-long boron nanowires as supercapacitor electrode material. Appl. Surf. Sci. 2019, 493, 787–794.

[111]

Breuer, S.; Pfüller, C.; Flissikowski, T.; Brandt, O.; Grahn, H. T.; Geelhaar, L.; Riechert, H. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 2011, 11, 1276–1279.

[112]

Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III-V semiconductor nanowires for optoelectronic device applications. Prog. Quantum Electron. 2011, 35, 23–75.

[113]

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

[114]

Dayeh, S. A.; Aplin, D. P. R.; Zhou, X. T.; Yu, P. K. L.; Yu, E. T.; Wang, D. L. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332

[115]

Pi, S. Y.; Sun, M. Y.; Zhao, Y. F.; Chong, Y. X.; Chen, D.; Liu, H. Electroporation-coupled electrochemical oxidation for rapid and efficient water disinfection with Co3O4 nanowire arrays-modified graphite felt electrodes. Chem. Eng. J. 2022, 435, 134967

[116]

Liu, H.; Huang, W.; Yu, Y.; Chen, D. Lightning-rod effect on nanowire tips reinforces electroporation and electrochemical oxidation: An efficient strategy for eliminating intracellular antibiotic resistance genes. ACS Nano 2023, 17, 3037–3046.

[117]

Lu, Y. W.; Liang, X. X.; Wang, C. Y.; Chen, D.; Liu, H. Synergistic nanowire-assisted electroporation and chlorination for inactivation of chlorine-resistant bacteria in drinking water systems via inducing cell pores for chlorine permeation. Water Res. 2023, 229, 119399

[118]

Wang, M. M.; Liu, L. J.; Wen, J. T.; Ding, Y.; Xi, J. R.; Li, J. C.; Lu, F. Z.; Wang, W. K.; Xu, J. Multimetallic CuCoNi oxide nanowires in situ grown on a nickel foam substrate catalyze persulfate activation via mediating electron transfer. Environ. Sci. Technol. 2022, 56, 12613–12624.

[119]

Zhao, H. M.; Zhang, Z. P.; Zhou, C. G.; Zhang, H. F. Tuning the morphology and size of NiMoO4 nanosheets anchored on NiCo2O4 nanowires: The optimized core–shell hybrid for high energy density asymmetric supercapacitors. Appl. Surf. Sci. 2021, 541, 148458.

[120]

Zhou, X. Y.; Chen, G. H.; Tang, J. J.; Ren, Y. P.; Yang, J. One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J. Power Sources 2015, 299, 97–103.

[121]

Zhao, M. X.; Yang, L. Q.; Cai, Z. Y.; Guo, H.; Zhao, Z. J. Design of binder-free hierarchical Mo-Fe-Ni phosphides nanowires array anchored on carbon cloth with high electrocatalytic capability toward hydrogen evolution reaction. J. Alloys Compd. 2022, 891, 162064.

[122]

Zhou, W. J.; Liu, X. J.; Sang, Y. H.; Zhao, Z. H.; Zhou, K.; Liu, H.; Chen, S. W. Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl. Mater. Interfaces 2014, 6, 4578–4586.

[123]

Wang, C. J.; Liu, X. J.; Sang, Y. H.; Zhao, Z. H.; Zhou, K.; Liu, H.; Chen, S. W. Fabrication and shell optimization of synergistic TiO2-MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524–3533.

[124]

Lu, Y. W.; Wang, Y.; Liu, Y. R.; Liu, H. Square-wave alternating voltage driving promotes nanowire-assisted electroporation inactivation and fouling resistance of pathogenic bacteria for water disinfection. Chem. Eng. J. 2024, 480, 148074.

[125]

Wang, Y.; Lu, Y. W.; Liu, H. Nanowire electroporation-induced cell pores on antibiotic-resistant bacteria to promote chlorine permeation for eliminating intracellular antibiotic resistance genes. Chem. Eng. J. 2024, 479, 147801.

[126]

Wang, H. B.; Desbordes, M.; Xiao, Y.; Kubo, T.; Tada, K.; Bessho, T.; Nakazaki, J.; Segawa, H. Highly stable interdigitated PbS quantum dot and ZnO nanowire solar cells with an automatically embedded electron-blocking layer. ACS Appl. Energy Mater. 2021, 4, 5918–5926.

[127]

Lin, Y. C.; Liu, S. Robust ZnO nanowire photoanodes with oxygen vacancies for efficient photoelectrochemical cathodic protection. Appl. Surf. Sci. 2021, 566, 150694.

[128]

Lee, W.; Park, S. J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556.

[129]

Kim, K.; Kim, M.; Cho, S. M. Pulsed electrodeposition of palladium nanowire arrays using AAO template. Mater. Chem. Phys. 2006, 96, 278–282.

[130]

Schiavi, P. G.; Altimari, P.; Rubino, A.; Pagnanelli, F. Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization. Electrochim. Acta 2018, 259, 711–722.

[131]

Guiliani, J.; Cadena, J.; Monton, C. Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates. Nanotechnology 2018, 29, 075301.

[132]

Michalska-Domańska, M.; Norek, M.; Stępniowski, W. J.; Budner, B. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum. Electrochim. Acta 2013, 105, 424–432.

[133]

Weng, W.; Xiao, W. Electrodeposited silicon nanowires from silica dissolved in molten salts as a binder-free anode for lithium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 804–813.

[134]

Li, W. G.; Tekell, M. C.; Liu, C.; Hethcock, J. A.; Fan, D. L. Flexible all-solid-state supercapacitors of high areal capacitance enabled by porous graphite foams with diverging microtubes. Adv. Funct. Mater. 2018, 28, 1800601.

[135]

Luo, X. F.; Li, W. G.; Liang, Z. X.; Liu, Y. F.; Fan, D. E. Portable bulk-water disinfection by live capture of bacteria with divergently branched porous graphite in electric fields. ACS Nano 2023, 17, 10041–10054.

[136]

Tang, J. X.; Tian, N.; Xiao, L. P.; Chen, Q. S.; Wang, Q.; Zhou, Z. Y.; Sun, S. G. Helical PdPtAu nanowires bounded with high-index facets selectively switch the pathway of ethanol electrooxidation. J. Mater. Chem. A 2022, 10, 10902–10908.

[137]

Tang, J. X.; Chen, Q. S.; You, L. X.; Liao, H. G.; Sun, S. G.; Zhou, S. G.; Xu, Z. N.; Chen, Y. M.; Guo, G. C. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2018, 6, 2327–2336.

[138]

Dai, X. C.; Hou, S.; Huang, M. H.; Li, Y. B.; Li, T.; Xiao, F. X. Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion. J. Phys. Energy 2019, 1, 022002.

[139]

Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

[140]

Zhang, Z. H.; Hossain, M. F.; Takahashi, T. Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application. Mater. Lett. 2010, 64, 435–438.

[141]

LaTempa, T. J.; Feng, X. J.; Paulose, M.; Grimes, C. A. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: Rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. C 2009, 113, 16293–16298.

[142]

Huo, Z. Y.; Zhou, J. F.; Wu, Y. T.; Wu, Y. H.; Liu, H.; Liu, N.; Hu, H. Y.; Xie, X. A Cu3P nanowire enabling high-efficiency, reliable, and energy-efficient low-voltage electroporation-inactivation of pathogens in water. J. Mater. Chem. A 2018, 6, 18813–18820

[143]

Huo, Z. Y.; Liu, H.; Wang, W. L.; Wang, Y. H.; Wu, Y. H.; Xie, X.; Hu, H. Y. Low-voltage alternating current powered polydopamine-protected copper phosphide nanowire for electroporation-disinfection in water. J. Mater. Chem. A 2019, 7, 7347–7354.

[144]

Su, P. F.; Zhang, Z. Q.; Luo, L. S.; Zhang, Z. Y.; Lan, C. F.; Li, Y. H.; Xu, S. W.; Pei, S. P.; Lin, G. Y.; Li, C. et al. Cu nanowire array with designed interphases enabling high performance Si anode toward flexible lithium-ion battery. Nano Res. 2024, 17, 1516–1524.

[145]

Mateen Tantray, A.; Shah, M. A. Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization. Chem. Phys. Lett. 2020, 747, 137346.

[146]

Tello, A.; Boulett, A.; Sánchez, J.; Pizarro, G. D. C.; Soto, C.; Linarez Pérez, O. E.; Sanhueza, R.; Oyarzún, D. P. An unexplored strategy for synthesis of ZnO nanowire films by electrochemical anodization using an organic-based electrolyte. Morphological and optical properties characterization. Chem. Phys. Lett. 2021, 778, 138825.

[147]

Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.

[148]

Huo, Z. Y.; Yang, Y. X.; Jeong, J. M.; Wang, X. X.; Zhang, H.; Wei, M. D.; Dai, K. R.; Xiong, P. X.; Kim, S. W. Self-powered disinfection using triboelectric, conductive wires of metal-organic frameworks. Nano Lett. 2023, 23, 3090–3097.

[149]

Chen, F.; Chen, C.; Hu, Q.; Xiang, B.; Song, T. T.; Zou, X. F.; Li, W. N.; Xiong, B. X.; Deng, M. S. Synthesis of CuO@CoNi LDH on Cu foam for high-performance supercapacitors. Chem. Eng. J. 2020, 401, 126145.

[150]

Çakır, O. Review of etchants for copper and its alloys in wet etching processes. Key Eng. Mater, 2008, 364–366, 460–465

[151]

Yue, L. F.; Chen, S. G.; Wang, S. T.; Wang, C. Y.; Hao, X. P.; Cheng, Y. F. Water disinfection using Ag nanoparticle-CuO nanowire co-modified 3D copper foam nanocomposites in high flow under low voltages. Environ. Sci. Nano 2019, 6, 2801–2809.

[152]

Wang, S. T.; Dong, L. T.; Zhang, M. T.; Cheng, F.; Chen, S. G. N-doped carbon-coated Cu2O nanowire arrays on copper foam for rapid and stable water disinfection. J. Colloid Interface Sci. 2022, 625, 761–773.

[153]

Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem. Commun. 2006, 3551–3553

[154]

Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B Environ. 2020, 273, 119060.

[155]

Li, X. L. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 2012, 16, 71–81.

[156]

Huang, Z. P.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308.

[157]

Leonardi, A. A.; Faro, M. J. L.; Irrera, A. Silicon nanowires synthesis by metal-assisted chemical etching: A review. Nanomaterials 2021, 11, 383.

[158]

Dimova-Malinovska, D.; Sendova-Vassileva, M.; Tzenov, N.; Kamenova, M. Preparation of thin porous silicon layers by stain etching. Thin Solid Films 1997, 297, 9–12.

[159]

Li, X.; Bohn, P. W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572–2574.

[160]

Chang, S. W.; Chuang, V. P.; Boles, S. T.; Ross, C. A.; Thompson, C. V. Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv. Funct. Mater. 2009, 19, 2495–2500.

[161]

Yae, S.; Kawamoto, Y.; Tanaka, H.; Fukumuro, N.; Matsuda, H. Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells. Electrochem. Commun. 2003, 5, 632–636.

[162]

Huang, Z. P.; Zhang, X. X.; Reiche, M.; Liu, L. F.; Lee, W.; Shimizu, T.; Senz, S.; Gösele, U. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett. 2008, 8, 3046–3051.

[163]

Pérez-Díaz, O.; Quiroga-González, E.; Hansen, S.; Silva-González, N. R.; Carstensen, J.; Adelung, R. Fabrication of silicon microwires by a combination of chemical etching steps and their analysis as anode material in Li-ion batteries. Mater. Technol. 2019, 34, 785–791.

[164]

Yeom, J.; Ratchford, D.; Field, C. R.; Brintlinger, T. H.; Pehrsson, P. E. Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv. Funct. Mater. 2014, 24, 106–116.

[165]

Mishra, S. M.; Dey, S.; Singha, T.; Mandal, S.; Dehury, A. K.; Chaudhary, Y. S.; Satpati, B. Enhanced optical properties and dark I V characteristics of silicon nanowire-carbon quantum dots heterostructures. Mater. Res. Bull. 2023, 164, 112262.

[166]

Um, H. D.; Kim, N.; Lee, K.; Hwang, I.; Hoon Seo, J.; Yu, Y. J.; Duane, P.; Wober, M.; Seo, K. Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications. Sci. Rep. 2015, 5, 11277.

[167]

Assa Aravindh, S.; Xin, B.; Mitra, S.; Roqan, I. S.; Najar, A. GaN and InGaN nanowires prepared by metal-assisted electroless etching: Experimental and theoretical studies. Results Phys. 2020, 19, 103428.

[168]

Najar, A.; Shafa, M.; Anjum, D. Synthesis, optical properties and residual strain effect of GaN nanowires generated via metal-assisted photochemical electroless etching. RSC Adv. 2017, 7, 21697–21702.

[169]

Soopy, A. K. K.; Najar, A.; Ravau, F.; Anjum, D. H. Facile development of InP nanowires via metal-assisted chemical etching and their optical properties. In 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA) 2021, pp, 25–28

[170]

Zhao, S. F.; Han, F.; Li, J. H.; Meng, X. Y.; Huang, W. P.; Cao, D. X.; Zhang, G. P.; Sun, R.; Wong, C.-P. Advancements in copper nanowires: Synthesis, purification, assemblies, surface modification, and applications, Small 2018, 14, 1800047.

[171]

Humphreys, F. J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, 2018.

[172]

Cudennec, Y.; Lecerf, A. The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 2003, 5, 1471–1474.

[173]

Huang, H. W.; Yu, Q.; Ye, Y. H.; Wang, P.; Zhang, L. Q.; Gao, M. X.; Peng, X. S.; Ye, Z. Z. Thin copper oxide nanowires/carbon nanotubes interpenetrating networks for lithium ion batteries. CrystEngComm 2012, 14, 7294–7300.

[174]

Qiao, H. D.; Yu, Y. W.; Song, K. F.; Liu, Z. Y.; Hu, X. L. High mass loading NiCo-OH nanothorns coated CuO nanowire arrays for high-capacity nickel-zinc battery. Nanotechnology 2021, 32, 505404.

[175]

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

[176]

Xu, X. D.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630.

[177]

Harris, S.; Chianelli, R. R. Catalysis by transition metal sulfides: A theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides. J. Catal. 1986, 98, 17–31.

[178]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[179]

Zhou, W. J.; Liu, H.; Boughton, R. I.; Du, G. J.; Lin, J. J.; Wang, J. Y.; Liu, D. One-dimensional single-crystalline Ti-O based nanostructures: Properties, synthesis, modifications and applications. J. Mater. Chem. 2010, 20, 5993–6008

[180]

Britvin, S. N.; Lotnyk, A.; Kienle, L.; Krivovichev, S. V.; Depmeier, W. Layered hydrazinium titanate: Advanced reductive adsorbent and chemical toolkit for design of titanium dioxide nanomaterials. J. Am. Chem. Soc. 2011, 133, 9516–9525.

[181]

Kang, Q.; Vernisse, L.; Remsing, R. C.; Thenuwara, A. C.; Shumlas, S. L.; Mckendry, I. G.; Klein, M. L.; Borguet, E.; Zdilla, M. J.; Strongin, D. R. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2017, 139, 1863–1870.

[182]

Zhang, L.; Zhang, Q.; Li, J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv. Funct. Mater. 2007, 17, 1958–1965.

[183]

García-García, P.; Müller, M.; Corma, A. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chem. Sci. 2014, 5, 2979–3007.

Nano Research
Pages 8863-8884
Cite this article:
Mo F, Chen Z, Liu N, et al. Synthesis and modification of nanowires anchored on electrodes for electrochemical and electrophysical applications. Nano Research, 2024, 17(10): 8863-8884. https://doi.org/10.1007/s12274-024-6788-x
Topics:
Part of a topical collection:

513

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 April 2024
Revised: 22 May 2024
Accepted: 26 May 2024
Published: 16 July 2024
© Tsinghua University Press 2024
Return