Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Advancements in power electronics necessitate dielectric polymer films capable of operating at high temperatures and possessing high energy density. Although significant strides have been achieved by integrating inorganic fillers into high-temperature polymer matrices, the inherently low dielectric constants of these matrices have tempered the magnitude of success. In this work, we report an innovative nanocomposite based on sulfonylated polyimide (SPI), distinguished by the incorporation of sulfonyl groups within the SPI backbone and the inclusion of wide bandgap hafnium dioxide (HfO2) nanofillers. The nanocomposite has demonstrated notable enhancements in thermal stability, dielectric properties, and capacitive performance at elevated temperatures. Detailed simulations at both molecular and mesoscopic levels have elucidated the mechanisms behind these improvements, which could be attributed to confined segmental motion, an optimized electronic band structure, and a diminished incidence of dielectric breakdown ascribed to the presence of sulfonyl groups. Remarkably, the SPI-HfO2 nanocomposite demonstrates a high charge-discharge efficiency of 95.7% at an elevated temperature of 150 °C and an applied electric field of 200 MV/m. Furthermore, it achieves a maximum discharged energy density of 2.71 J/cm³, signalling its substantial potential for energy storage applications under extreme conditions.
Duan, R. Y.; Zhou, J. L.; Zheng, X.; Ma, X. Y.; Zhai, R.; Hao, J. R.; Zhou, Y. H.; Teng, C.; Jiang, L. High-strength, thin PBO nanofiber membrane with long-term stability for osmotic energy conversion. Adv. Funct. Mater. 2024, 34, 2311258.
Li, X. D.; Zhu, X.; Feng, A. L.; An, M. M.; Liu, P. T.; Zu, Y. Q. Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 2024, 29, 5667–5680.
Luo, H.; Wang, F.; Guo, R.; Zhang, D.; He, G. H.; Chen, S.; Wang, Q. Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 2022, 9, 2202438.
Wang, G.; Lu, Z. L.; Li, Y.; Li, L. H.; Ji, H. F.; Feteira, A.; Zhou, D.; Wang, D. W.; Zhang, S. J.; Reaney, I. M. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev. 2021, 121, 6124–6172.
Chen, J.; Zhou, Y.; Huang, X. Y.; Yu, C. Y.; Han, D. L.; Wang, A.; Zhu, Y. K.; Shi, K. M.; Kang, Q.; Li, P. L. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 2023, 615, 62–66.
Zhou, Y.; Zhu, Y. J.; Xu, W. H.; Wang, Q. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv. Energy Mater. 2023, 13, 2203961.
Wang, J.; Zhai, R.; Ma, X. Y.; Liu, W. G.; Teng, C. Large flakes of Al-Ti3C2T x MXene constructing highly ordered layered MXene/ANF films with integrated multifunctionalities. Ceram. Int. 2024, 50, 11379–11391.
Ho, J.; Jow, T. R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 990–995.
Ding, J. L.; Xu, W. H.; Zhu, X. B.; Liu, Z.; Zhang, Y. H.; Jiang, Z. H. All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage. Nano Res. 2023, 16, 10183–10190.
Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.
Ding, J. L.; Zhou, Y.; Xu, W. H.; Yang, F.; Zhao, D. Y.; Zhang, Y. H.; Jiang, Z. H.; Wang, Q. Ultraviolet-irradiated all-organic nanocomposites with polymer dots for high-temperature capacitive energy storage. Nano-Micro Lett. 2024, 16, 59.
Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 2022, 16, 6700–6711.
Li, H.; Gadinski, M. R.; Huang, Y. Q.; Ren, L. L.; Zhou, Y.; Ai, D.; Han, Z. B.; Yao, B.; Wang, Q. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 2020, 13, 1279–1286.
Watson, J.; Castro, G. A review of high-temperature electronics technology and applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9226–9235.
Liu, X. J.; Zheng, M. S.; Chen, G.; Dang, Z. M.; Zha, J. W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2022, 15, 56–81.
Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.
Li, H.; Ren, L. L.; Ai, D.; Han, Z. B.; Liu, Y.; Yao, B.; Wang, Q. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. InfoMat 2020, 2, 389–400.
Li, H.; Ai, D.; Ren, L. L.; Yao, B.; Han, Z. B.; Shen, Z. H.; Wang, J. J.; Chen, L. Q.; Wang, Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, 1900875.
Ren, L. L.; Li, H.; Xie, Z. L.; Ai, D.; Zhou, Y.; Liu, Y.; Zhang, S. Y.; Yang, L. J.; Zhao, X. T.; Peng, Z. R. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers. Adv. Energy Mater. 2021, 11, 2101297.
Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x -(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.
Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. 2023, 135, e202309010.
Ai, D.; Li, H.; Zhou, Y.; Ren, L. L.; Han, Z. B.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J. M.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881.
Ai, D.; Han, Y. T.; Xie, Z. L.; Pang, X.; Chang, Y.; Li, H.; Wu, C. L.; Cheng, Y. H.; Wu, G. L. High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance. Nano Res. 2024, 17, 7746–7755.
Wei, J. J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254.
Wang, Z. D.; Li, M. L.; Liu, B. T.; Yang, G. Q.; Luo, M.; Zhang, T.; Li, L.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Enhanced energy storage characteristics of the epoxy film with rigid phenyl-flexible etherified methylene chains. J. Mater. Sci. Technol. 2024, 183, 12–22.
Zhang, T. D.; Sun, H.; Yin, C.; Jung, Y. H.; Min, S.; Zhang, Y.; Zhang, C. H.; Chen, Q. G.; Lee, K. J.; Chi, Q. G. Recent progress in polymer dielectric energy storage: From film fabrication and modification to capacitor performance and application. Prog. Mater. Sci. 2023, 140, 101207.
Tong, H.; Fu, J.; Ahmad, A.; Fan, T.; Hou, Y. D.; Xu, J. Sulfonyl-containing polyimide dielectrics with advanced heat resistance and dielectric properties for high-temperature capacitor applications. Macromol. Mater. Eng. 2019, 304, 1800709.
Chen, S. Y.; Meng, G. D.; Kong, B.; Xiao, B.; Wang, Z. D.; Jing, Z. A.; Gao, Y. S.; Wu, G. L.; Wang, H.; Cheng, Y. H. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 2020, 387, 123662.
Treufeld, I.; Wang, D. H.; Kurish, B. A.; Tan, L. S.; Zhu, L. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain. J. Mater. Chem. A 2014, 2, 20683–20696.
Wei, J. J.; Zhang, Z. B.; Tseng, J. K.; Treufeld, I.; Liu, X. B.; Litt, M. H.; Zhu, L. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. ACS Appl. Mater. Interfaces 2015, 7, 5248–5257.
Wei, J. J.; Ju, T. X.; Huang, W.; Song, J. L.; Yan, N.; Wang, F. Y.; Shen, A. Q.; Li, Z. P.; Zhu, L. High dielectric constant dipolar glass polymer based on sulfonylated poly(ether ether ketone). Polymer 2019, 178, 121688.
Wu, D.; Zhao, X.; Li, X. T.; Dong, J.; Zhang, Q. H. Polyimide film containing sulfone groups with high dielectric properties. Polymer 2022, 256, 125221.
Zhang, Z. B.; Wang, D. H.; Litt, M. H.; Tan, L. S.; Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2, 6-dimethyl-1, 4-phenylene oxide). Angew. Chem. 2018, 130, 1544–1547.
Thakur, Y.; Lin, M. R.; Wu, S.; Zhang, Q. M. Aromatic polyurea possessing high electrical energy density and low loss. J. Electron. Mater. 2016, 45, 4721–4725.
Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high- k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.
Guo, N.; DiBenedetto, S. A.; Kwon, D. K.; Wang, L.; Russell, M. T.; Lanagan, M. T.; Facchetti, A.; Marks, T. J. Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites. J. Am. Chem. Soc. 2007, 129, 766–767.
Zhang, X.; Li, B. W.; Dong, L. J.; Liu, H. X.; Chen, W.; Shen, Y.; Nan, C. W. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 2018, 5, 1800096.
Xu, W. H.; Liu, J.; Chen, T. W.; Jiang, X. Y.; Qian, X. S.; Zhang, Y.; Jiang, Z. H.; Zhang, Y. H. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 2019, 15, 1901582.
Ren, L. L.; Yang, L. J.; Zhang, S. Y.; Li, H.; Zhou, Y.; Ai, D.; Xie, Z. L.; Zhao, X. T.; Peng, Z. R.; Liao, R. J. et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos. Sci. Technol. 2021, 201, 108528.
Dong, J. F.; Hu, R. C.; Niu, Y. J.; Sun, L.; Li, L. T.; Li, S.; Pan, D. S.; Xu, X. W.; Gong, R.; Cheng, J. et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy 2022, 99, 107314.
Xie, Z. L.; Le, K.; Li, H.; Pang, X.; Xu, T. L.; Altoé, V.; Klivansky, L. M.; Wang, Y. F.; Huang, Z. Y.; Shelton, S. W. et al. Interfacial engineering using covalent organic frameworks in polymer composites for high-temperature electrostatic energy storage. Adv. Funct. Mater. 2024, 34, 2314910.
Li, H.; Yang, T. N.; Zhou, Y.; Ai, D.; Yao, B.; Liu, Y.; Li, L.; Chen, L. Q.; Wang, Q. Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 2021, 31, 2006739.
Li, L. T.; Dong, J. F.; Hu, R. C.; Chen, X. Q.; Niu, Y. J.; Wang, H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem. Eng. J. 2022, 435, 135059.
Sun, W. D.; Lu, X. J.; Jiang, J. Y.; Zhang, X.; Hu, P. H.; Li, M.; Lin, Y. H.; Nan, C. W.; Shen, Y. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 2017, 121, 244101.
Tong, Y. Z.; Li, C. N.; Wei, C.; Gao, D. L.; Ru, Y.; He, G. J.; Cao, X. W.; Yang, Z. T. Achieving low dielectric loss and high energy density of polyimide composite dielectric film: Inhibiting the formation of conductive path in both macro-microscales. J. Mater. Sci. 2022, 57, 7225–7238.
Chi, Q. G.; Gao, Z. Y.; Zhang, T. D.; Zhang, C. H.; Zhang, Y.; Chen, Q. G.; Wang, X.; Lei, Q. Q. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustain. Chem. Eng. 2019, 7, 748–757.
Wang, J. C.; Sun, Y.; Wang, P. N.; Yu, X. M.; Shi, H. B.; Zhang, X. Q.; Yang, H.; Lin, B. P. High energy density of polyimide composites containing one-dimensional BaTiO3@ ZrO2 nanofibers for energy storage device. J. Alloys Compd. 2019, 789, 785–791.
Feng, Q. K.; Liu, D. F.; Zhang, Y. X.; Pei, J. Y.; Zhong, S. L.; Hu, H. Y.; Wang, X. J.; Dang, Z. M. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 2022, 99, 107410.
Li, Z. W.; Qin, H. M.; Song, J. H.; Liu, M.; Zhang, X. L.; Wang, S.; Xiong, C. X. Polyimide nanodielectrics doped with ultralow content of MgO nanoparticles for high-temperature energy storage. Polymers 2022, 14, 2918.
Zhang, K. Y.; Ma, Z. Y.; Deng, H.; Fu, Q. Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. 2022, 5, 238–249.
Gee, R. H.; Boyd, R. H. The role of the torsional potential in relaxation dynamics: A molecular dynamics study of polyethylene. Comput. Theor. Polym. Sci. 1998, 8, 93–98.