Sort:
Research Article Issue
Dielectric nanocomposites with superb high-temperature capacitive performance based on high intrinsic dielectric constant polymer
Nano Research 2024, 17 (9): 8504-8512
Published: 13 July 2024
Abstract PDF (9.4 MB) Collect
Downloads:40

Advancements in power electronics necessitate dielectric polymer films capable of operating at high temperatures and possessing high energy density. Although significant strides have been achieved by integrating inorganic fillers into high-temperature polymer matrices, the inherently low dielectric constants of these matrices have tempered the magnitude of success. In this work, we report an innovative nanocomposite based on sulfonylated polyimide (SPI), distinguished by the incorporation of sulfonyl groups within the SPI backbone and the inclusion of wide bandgap hafnium dioxide (HfO2) nanofillers. The nanocomposite has demonstrated notable enhancements in thermal stability, dielectric properties, and capacitive performance at elevated temperatures. Detailed simulations at both molecular and mesoscopic levels have elucidated the mechanisms behind these improvements, which could be attributed to confined segmental motion, an optimized electronic band structure, and a diminished incidence of dielectric breakdown ascribed to the presence of sulfonyl groups. Remarkably, the SPI-HfO2 nanocomposite demonstrates a high charge-discharge efficiency of 95.7% at an elevated temperature of 150 °C and an applied electric field of 200 MV/m. Furthermore, it achieves a maximum discharged energy density of 2.71 J/cm³, signalling its substantial potential for energy storage applications under extreme conditions.

Total 1