Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Designing hierarchical structures for innovative cooling textile

Xiran Du1Jinlei Li1Bin Zhu1Jia Zhu1,2()
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
School of Sustainable Energy and Resources, Nanjing University, Suzhou 215163, China
Show Author Information

Graphical Abstract

View original image Download original image
This review summarizes the recent advancements in hierarchical structure design for advanced cooling textiles and also discuss the challenges and future directions in achieving effective cooling for human body.

Abstract

The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial. This review focuses on recent advancements in hierarchical structure design for innovative cooling textiles. Beginning with insights into fundamental heat transfer processes between the human body, textile, and the surroundings, we uncover key control mechanisms. Then the advanced hierarchical structure designs enabling effective radiation, sweat evaporation, conduction management, and integration of cold energy sources for realizing effective human body cooling are systematically summarized. Additionally, we explore multifunctional designs beyond cooling, including switchable cooling-heating and sensing. Finally, we engage in discussions on unifying cooling performance tests and additional multiple requirements to make strides toward practical applications. This review is anticipated to be a valuable resource, providing the scientific and industrial communities with a quick grasp of past advancements, current challenges, and future directions in achieving effective human body cooling.

References

[1]

Katić, K.; Li, R. L.; Zeiler, W. Thermophysiological models and their applications: A review. Build. Environ. 2016, 106, 286–300.

[2]

Ho, C. P.; Fan, J.; Newton, E.; Au, R. Improving thermal comfort in apparel. In Improving Comfort in Clothing: Woodhead Publishing Series in Textiles. Song, G., Ed.; Woodhead Publishing: Oxford, 2011; pp 165–181.

[3]

Gleba, M.; Harris, S. The first plant bast fibre technology: Identifying splicing in archaeological textiles. Archaeol. Anthropol. Sci. 2019, 11, 2329–2346.

[4]

Suppes, G. J.; Storvick ,T. S. Energy in heating, ventilation, and air conditioning. In Sustainable Nuclear Power: Sustainable World. Academic Press: Amsterdam, 2007; pp 201–221.

[5]
IEA. The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning [Online]. IEA, 2018. https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf (accessed Jun 9, 2024).
[6]
UN Environment Programme. What You Should Know About Sustainable Cooling [Online]. UN Environment Programme, 2019. https://www.unep.org/news-and-stories/story/what-you-should-know-about-sustainable-cooling (accessed Jun 9, 2024).
[7]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[8]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

[9]

Ma, Z. H.; Zhao, D. L.; She, C. L.; Yang, Y. J.; Yang, R. G. Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 2021, 20, 100465.

[10]

Hu, R.; Liu, Y. D.; Shin, S.; Huang, S. Y.; Ren, X. C.; Shu, W. C.; Cheng, J. J.; Tao, G. M.; Xu, W. L.; Chen, R. K. et al. Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 2020, 10, 1903921.

[11]

Lei, L. Q.; Shi, S.; Wang, D.; Meng, S.; Dai, J. G.; Fu, S. H.; Hu, J. L. Recent advances in thermoregulatory clothing: Materials, mechanisms, and perspectives. ACS Nano 2023, 17, 1803–1830.

[12]

Jing, Y. Y.; Du, M. Z.; Zhang, P. Y.; Liang, Z. Q.; Du, Y.; Yao, L.; Chen, H. S.; Zhang, T.; Zhang, K. Advanced cooling textile technologies for personal thermoregulation. Mater. Today Phys. 2024, 41, 101334.

[13]

Hardy, J. D.; DuBois, E. F. Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. USA 1937, 23, 624–631.

[14]

Wendt, D.; van Loon, L. J. C.; Lichtenbelt, W. D. M. Thermoregulation during exercise in the heat: Strategies for maintaining health and performance. Sports Med. 2007, 37, 669–682.

[15]

Nielsen, B. Regulation of body temperature and heat dissipation at different levels of energy-and heat production in man. Acta Physiol. Scand. 1996, 68, 215–227.

[16]

Peng, Y. C.; Cui, Y. Advanced textiles for personal thermal management and energy. Joule 2020, 4, 724–742.

[17]

Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973, 18, 686–694.

[18]

Zeng, S. N.; Pian, S. J.; Su, M. Y.; Wang, Z. N.; Wu, M. Q.; Liu, X. H.; Chen, M. Y.; Xiang, Y. Z.; Wu, J. W.; Zhang, M. N. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696.

[19]

Karunakaran, G.; Periyasamy, A. P.; Militký, J. Color and design for textiles. In Fibrous Structures and Their Impact on Textile Design. Militký, J.; Venkataraman, M.; Periyasamy, A. P., Eds.; Springer: Singapore, 2023; pp 119–148.

[20]

Gulmine, J. V.; Janissek, P. R.; Heise, H. M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563.

[21]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[22]

Fang, Y. S.; Zhao, X.; Chen, G. R.; Tat, T.; Chen, J. Smart polyethylene textiles for radiative and evaporative cooling. Joule 2021, 5, 752–754.

[23]

Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y. X.; Xu, N.; Wu, Z.; Li, J. L.; Li, X. Q. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348.

[24]

Huang, J. Y.; Lin, C. J.; Li, Y.; Huang, B. L. Effects of humidity, aerosol, and cloud on subambient radiative cooling. Int. J. Heat Mass Transfer 2022, 186, 122438.

[25]

Wu, X. K.; Li, J. L.; Jiang, Q. Y.; Zhang, W. S.; Wang, B. S.; Li, R.; Zhao, S. M.; Wang, F.; Huang, Y.; Lyu, P. et al. An all-weather radiative human body cooling textile. Nat. Sustain. 2023, 6, 1446–1454.

[26]

Cai, L. L.; Peng, Y. C.; Xu, J. W.; Zhou, C. Y.; Zhou, C. X.; Wu, P. L.; Lin, D. C.; Fan, S. H.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 3, 1478–1486.

[27]

Zhu, Z. J.; Zhang, J.; Tong, Y. L.; Peng, G.; Cui, T. T.; Wang, C. F.; Chen, S.; Weitz, D. A. Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photonics 2019, 6, 116–122.

[28]

Wang, X. Y.; Zhang, Q.; Wang, S. H.; Jin, C. Q.; Zhu, B.; Su, Y. C.; Dong, X. Y.; Liang, J.; Lu, Z. D.; Zhou, L. et al. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 2022, 67, 1874–1881.

[29]

Zuo, X. W.; Zhang, X. J.; Qu, L. J.; Miao, J. L. Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv. Mater. Technol. 2023, 8, 2201137.

[30]

Miao, D. Y.; Wang, X. F.; Yu, J. Y.; Ding, B. Nanoengineered textiles for outdoor personal cooling and drying. Adv. Funct. Mater. 2022, 32, 2209029.

[31]

Davis, J. K.; Bishop, P. A. Impact of clothing on exercise in the Heat. Sports Med. 2013, 43, 695–706.

[32]

Fan, C. H.; Zhang, Y. X.; Long, Z. W.; Mensah, A.; Wang, Q. Q.; Lv, P. F.; Wei, Q. F. Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability. Adv. Funct. Mater. 2023, 33, 2300794.

[33]

Miao, D. Y.; Huang, Z.; Wang, X. F.; Yu, J. Y.; Ding, B. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 2018, 14, 1801527.

[34]

Dai, B.; Li, K.; Shi, L. X.; Wan, X. Z.; Liu, X.; Zhang, F. L.; Jiang, L.; Wang, S. T. Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 2019, 31, 1904113.

[35]

Lao, L.; Shou, D.; Wu, Y. S.; Fan, J. T. “Skin-like” fabric for personal moisture management. Sci. Adv. 2020, 6, eaaz0013

[36]

Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 2021, 4, 715–724.

[37]

Peng, Y. C.; Li, W.; Liu, B. F.; Jin, W. L.; Schaadt, J.; Tang, J.; Zhou, G. M.; Wang, G. Y.; Zhou, J. W.; Zhang, C. et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 2021, 12, 6122.

[38]

Liu, Z. W.; Lyu, J.; Fang, D.; Zhang, X. T. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019, 13, 5703–5711.

[39]

Cui, Y.; Gong, H. X.; Wang, Y. J.; Li, D. W.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807.

[40]

Kalaoglu-Altan, O. I.; Kayaoglu, B. K.; Trabzon, L. Improving thermal conductivities of textile materials by nanohybrid approaches. iScience 2022, 25, 103825.

[41]

Gao, T. T.; Yang, Z.; Chen, C. J.; Li, Y. J.; Fu, K.; Dai, J. Q.; Hitz, E. M.; Xie, H.; Liu, B. Y.; Song, J. W. et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017, 11, 11513–11520.

[42]

Abbas, A.; Zhao, Y.; Wang, X. G.; Lin, T. Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J. Text. Inst. 2013, 104, 798–807.

[43]

Hu, X. L.; Tian, M. W.; Xu, T. L.; Sun, X. T.; Sun, B.; Sun, C. C.; Liu, X. Q.; Zhang, X. J.; Qu, L. J. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020, 14, 559–567.

[44]

Yu, X.; Li, Y.; Wang, X. F.; Si, Y.; Yu, J. Y.; Ding, B. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl. Mater. Interfaces 2020, 12, 32078–32089.

[45]

Wu, J. W.; Hu, R.; Zeng, S. N.; Xi, W.; Huang, S. Y.; Deng, J. H.; Tao, G. M. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 2020, 12, 19015–19022.

[46]

Song, W. F.; Wang, F. M.; Wei, F. R. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment. Build. Environ. 2016, 100, 92–101.

[47]

Udayraj; Wang, F. M.; Song, W. F.; Ke, Y.; Xu, P. J.; Chow, C. S. W.; Noor, N. Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. Ergonomics 2019, 62, 928–939.

[48]

Zhang, T.; Li, K. W.; Zhang, J.; Chen, M.; Wang, Z.; Ma, S. Y.; Zhang, N.; Wei, L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017, 41, 35–42.

[49]

Hong, S.; Gu, Y.; Seo, J. K.; Wang, J.; Liu, P.; Meng, Y. S.; Xu, S.; Chen, R. K. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 2019, 5, eaaw0536.

[50]

Wang, Z. Y.; Bo, Y. W.; Bai, P. J.; Zhang, S. C.; Li, G. H.; Wan, X. J.; Liu, Y. S.; Ma, R. J.; Chen, Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science 2023, 382, 1291–1296.

[51]

Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.

[52]

Luo, H.; Zhu, Y. N.; Xu, Z. Q.; Hong, Y.; Ghosh, P.; Kaur, S.; Wu, M. B.; Yang, C. Y.; Qiu, M.; Li, Q. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 2021, 21, 3879–3886.

[53]

Shi, M. K.; Song, Z. F.; Ni, J. H.; Du, X. Y.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 2023, 17, 2029–2038.

[54]

Peng, Y. C.; Lee, H. K.; Wu, D. S.; Cui, Y. Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 2022, 10, 167–173.

[55]

Zhang, X. A.; Yu, S. J.; Xu, B. B.; Li, M.; Peng, Z. W.; Wang, Y. X.; Deng, S. L.; Wu, X. J.; Wu, Z. P.; Ouyang, M. et al. Dynamic gating of infrared radiation in a textile. Science 2019, 363, 619–623.

[56]

Jia, T. J.; Wang, Y.; Dou, Y. Y.; Li, Y. W.; Jung de Andrade, M.; Wang, R.; Fang, S. L.; Li, J. J.; Yu, Z.; Qiao, R. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241.

[57]

Hu, J. L.; Irfan Iqbal, M.; Sun, F. X. Wool can be cool: Water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 2020, 30, 2005033.

[58]

Zhong, Y.; Zhang, F. H.; Wang, M.; Gardner, C. J.; Kim, G.; Liu, Y. J.; Leng, J. S.; Jin, S.; Chen, R. K. Reversible humidity sensitive clothing for personal thermoregulation. Sci. Rep. 2017, 7, 44208.

[59]

Li, X. Q.; Ma, B. R.; Dai, J. Y.; Sui, C. X.; Pande, D.; Smith, D. R.; Brinson, L. C.; Hsu, P. C. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 2021, 7, eabj7906.

[60]

Ergoktas, M. S.; Bakan, G.; Steiner, P.; Bartlam, C.; Malevich, Y.; Ozden-Yenigun, E.; He, G. L.; Karim, N.; Cataldi, P.; Bissett, M. A. et al. Graphene-enabled adaptive infrared textiles. Nano Lett. 2020, 20, 5346–5352.

[61]

Chen, T. H.; Hong, Y. Y.; Fu, C. T.; Nandi, A.; Xie, W. R.; Yin, J.; Hsu, P. C. A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS Nexus 2023, 2, pgad165.

[62]

Leung, E. M.; Colorado Escobar, M.; Stiubianu, G. T.; Jim, S. R.; Vyatskikh, A. L.; Feng, Z. J.; Garner, N.; Patel, P.; Naughton, K. L.; Follador, M. et al. A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 2019, 10, 1947.

[63]

Fang, Y. S.; Chen, G. R.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374.

[64]

Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

[65]

Psikuta, A.; Allegrini, J.; Koelblen, B.; Bogdan, A.; Annaheim, S.; Martínez, N.; Derome, D.; Carmeliet, J.; Rossi, R. M. Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research—A review. Renew. Sustain. Energy Rev. 2017, 78, 1315–1330.

[66]

Kong, M.; Dang, T. Q.; Zhang, J. S.; Khalifa, H. E. Micro-environmental control for efficient local heating: CFD simulation and manikin test verification. Build. Environ. 2019, 147, 382–396.

[67]
Lei, Z. X. Review of application of thermal manikin in evaluation on thermal and moisture comfort of clothing. J. Eng. Fibers Fabr., in press, DOI: 10.1177/1558925019841548.
[68]

Melikov, A. Breathing thermal manikins for indoor environment assessment: Important characteristics and requirements. Eur. J. Appl. Physiol. 2004, 92, 710–713.

[69]

Wang, F. M. Measurements of clothing evaporative resistance using a sweating thermal manikin an overview. Ind. Health 2017, 55, 473–484.

[70]
ISO 8996:2021. Ergonomics of the thermal environment—Determination of metabolic rate, 2021 [Online]. https://www.iso.org/standard/74443.html (accessed Jun 9, 2024).
[71]

Zhou, L.; Yin, X. B.; Gan, Q. Q. Best practices for radiative cooling. Nat. Sustain. 2023, 6, 1030–1032.

[72]

Peng, Y. C.; Zhou, J. W.; Yang, Y. F.; Lai, J. C.; Ye, Y. S.; Cui, Y. An integrated 3D hydrophilicity/hydrophobicity design for artificial sweating skin (i-TRANS) mimicking human body perspiration. Adv. Mater. 2022, 34, 2204168.

[73]

Zhao, D. L.; Aili, A.; Zhai, Y.; Xu, S. Y.; Tan, G.; Yin, X. B.; Yang, R. G. Radiative sky cooling: Fundamental principles, materials, and applications. Appl. Phys. Rev. 2019, 6, 021306.

[74]
ISO 9237:1995 Textiles—Determination of the permeability of fabrics to air, 1995 [Online]. https://www.iso.org/standard/16869.html (accessed Jun 9, 2024).
[75]
GB/T 21295:2014 Requirements of physical and chemical performance of garments, 2015 (in Chinese) [Online]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=8197355898C94B494AF0D51953924D9A (accessed Jun 9, 2024).
[76]
ISO 15496:2018 Textiles—Measurement of water vapour permeability of textiles for the purpose of quality control, 2018 [Online]. https://www.iso.org/standard/65150.html (accessed Jun 9, 2024).
[77]
ISO 5079:2020 Textile fibres—Determination of breaking force and elongation at break of individual fibres, 2020 [Online]. https://www.iso.org/standard/76604.html (accessed Jun 9, 2024).
[78]
ISO 13934-1:2013 Textiles—Tensile properties of fabrics-Part 1: Determination of maximum force and elongation at maximum force using the strip method, 2013 [Online]. https://www.iso.org/standard/60676.html (accessed Jun 9, 2024).
[79]
ISO 6330:2021 Textiles—Domestic washing and drying procedures for textile testing, 2021 [Online]. https://www.iso.org/standard/75934.html (accessed Jun 9, 2024).
[80]

Zhang, X. P.; Wang, F.; Guo, H. Y.; Sun, F. Q.; Li, X. S.; Zhang, C. T.; Yu, C. W.; Qin, X. H. Advanced cooling textiles: Mechanisms, applications, and perspectives. Adv. Sci. 2024, 11, 2305228.

[81]

Zhang, L. S.; Leung, M. Y.; Boriskina, S.; Tao, X. M. Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 2022, 6, 243–253.

[82]

Fu, C. Y.; Wang, Z. G.; Gao, Y. T.; Zhao, J.; Liu, Y. C.; Zhou, X. Y.; Qin, R. R.; Pang, Y. Y.; Hu, B. W.; Zhang, Y. Y. et al. Sustainable polymer coating for stainproof fabrics. Nat. Sustain. 2023, 6, 984–994.

[83]
ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework, 2006 [Online]. https://www.iso.org/standard/37456.html (accessed Jun 9, 2024).
[84]

Chen, X. D.; Memon, H. A.; Wang, Y. H.; Marriam, I.; Tebyetekerwa, M. Circular economy and sustainability of the clothing and textile industry. Mater. Circ. Econ. 2021, 3, 12.

Nano Research
Pages 9202-9224
Cite this article:
Du X, Li J, Zhu B, et al. Designing hierarchical structures for innovative cooling textile. Nano Research, 2024, 17(10): 9202-9224. https://doi.org/10.1007/s12274-024-6820-1
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return