AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts

Ziwei Deng1,§Yuexin Guo2,§Zhiyi Sun1Jie Lin4( )Huazhang Zhai1,3( )Wenxing Chen1( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
School of pharmacy, North China University of Science and Technology, Tangshan 063210, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China

§ Ziwei Deng and Yuexin Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Single atom catalysts (SACs) and nanocrystals (NCs) are considered as effective catalysts for electrocatalytic organic transformation.

Abstract

Organic synthesis chemistry plays a crucial role in supporting social sustainable development and finds widespread applications across various fields. Electrocatalysis, with its benefits of high efficiency, mild reaction conditions, controllability, and environmental friendliness, stands out as one of the most effective strategies for driving the transformation of organic substrates. In recent years, nanocrystals (NCs) and single atom catalysts (SACs) have garnered significant attention in the realm of electrocatalytic organic transformation. This article presents a comprehensive overview of the applications of NCs and SACs in electrocatalytic organic transformation. It delves into advanced catalysts for electrocatalysis of representative substrates, covering both anodic oxidation and cathodic reduction aspects, and addresses their synthesis, characterization, catalytic mechanism, and performance. The ultimate goal of this review is to serve as a valuable reference and a source of inspiration for further exploration into the development of more effective catalysts for electrocatalytic organic transformation.

References

[1]

Grygorenko, O. O.; Volochnyuk, D. M.; Ryabukhin, S. V.; Judd, D. B. The symbiotic relationship between drug discovery and organic chemistry. Chem.—Eur. J. 2020, 26, 1196–1237.

[2]

Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383–394.

[3]

Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore, K. Automated radial synthesis of organic molecules. Nature 2020, 579, 379–384.

[4]

Gäumann, P.; Cartagenova, D.; Ranocchiari, M. Phosphine-functionalized porous materials for catalytic organic synthesis. Eur. J. Org. Chem. 2022, 2022, e202201006.

[5]

Baig, R. B. N.; Varma, R. S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 2012, 4, 1559–1584.

[6]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[7]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[8]

Ragavan, K. V.; Hernandez-Hernandez, O., Martinez, M. M.; Gutiérrez, T. J. Organocatalytic esterification of polysaccharides for food applications: A review. Trends Food Sci. Technol. 2022, 119, 45–56.

[9]

Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.

[10]

Machado, I. V.; Dos Santos, J. R. N.; Januario, M. A. P.; Corrêa, A. G. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem. 2021, 78, 105704.

[11]

Cembellín, S.; Batanero, B. Organic electrosynthesis towards sustainability: Fundamentals and greener methodologies. Chem. Rec. 2021, 21, 2453–2471.

[12]

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

[13]

Dai, Y. T.; Xiong, Y. J. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res. Energy 2022, 1, 9120006.

[14]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 2, e202405637.

[15]

Ferraz, N. P.; Nogueira, A. E.; Marcos, F. C. F.; Machado, V. A.; Rocca, R. R.; Assaf, E. M.; Asencios, Y. J. O. CeO2-Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020, 39, 230–240.

[16]

Cheng, X.; Lei, A. W.; Mei, T. S.; Xu, H. C.; Xu, K.; Zeng, C. C. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem. 2022, 4, 1120–1152.

[17]

Zhang, J.; Feng, X. L. Graphdiyne electrocatalyst. Joule 2018, 2, 1396–1398.

[18]

Jain, S.; Dwivedi, J.; Jain, P.; Kishore, D. Use of 2,4,6-trichloro-1,3,5-triazine (TCT) as organic catalyst in organic synthesis. Synth. Commun. 2016, 46, 1155–1174.

[19]

Beig, N.; Goyal, V.; Bansal, R. K. Application of N-heterocyclic carbene-Cu(I) complexes as catalysts in organic synthesis: A review. Beilstein J. Org. Chem. 2023, 19, 1408–1442.

[20]

Hamidinasab, M.; Ahadi, N.; Bodaghifard, M. A.; Brahmachari, G. Sustainable and bio-based catalysts for multicomponent organic synthesis: An overview. Polycycl. Aromat. Comp. 2023, 43, 5172–5226.

[21]

Cossy, J. Biocatalyts: Catalysts of the future for organic synthesis and beyond. Tetrahedron 2022, 123, 132966.

[22]

Goldbach, V.; Krumova, M.; Mecking, S. Full-range interconversion of nanocrystals and bulk metal with a highly selective molecular catalyst. ACS Catal. 2018, 8, 5515–5525.

[23]

Li, L. C.; Zhang, N. Q. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Res. 2023, 16, 6380–6401.

[24]

Lane, M. K. M.; Rudel, H. E.; Wilson, J. A.; Erythropel, H. C.; Backhaus, A.; Gilcher, E. B.; Ishii, M.; Jean, C. F.; Lin, F.; Muellers, T. D. et al. Green chemistry as just chemistry. Nat. Sustain. 2023, 6, 502–512.

[25]

Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

[26]

Wu, F. X.; Li, F. H.; Lv, X. L.; Zhang, Q. X.; Xu, G. B.; Niu, W. X. Heteroepitaxial growth of Au@Pd core–shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition. Rare Met. 2024, 43, 225–235.

[27]

Zhang, P.; Yu, X.; Xia, P.; Cui, Z. Z.; Yi, J. H.; Li, C. J.; Song, P.; Zhao, F.; Wang, T.; Qiu, J. B. et al. Real-time evolution of up-conversion nanocrystals from tailored metastable intermediates. Nano Res. 2023, 16, 1552–1557.

[28]

Su, M. Y.; Li, X. Y.; Zhang, J. T. Telluride semiconductor nanocrystals: Progress on their liquid-phase synthesis and applications. Rare Met. 2022, 41, 2527–2551.

[29]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[30]

Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction—A review. Nano Res. Energy 2023, 2, e9120082.

[31]

You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 128, 10067–10071.

[32]

Cao, T.; Wu, M. J.; Ordomsky, V. V.; Xin, X.; Wang, H.; Métivier, P.; Pera-Titus, M. Selective electrogenerative oxidation of 5-hydroxymethylfurfural to 2,5-furandialdehyde. ChemSusChem 2017, 10, 4851–4854.

[33]

Liu, W.-J.; Dang, L. N.; Xu, Z. R.; Yu, H.-Q.; Jin, S.; Huber, G. W. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 2018, 8, 5533–5541.

[34]

Zhou, Y. L.; Gao, Y. J.; Zhong, X.; Jiang, W. B.; Liang, Y. L.; Niu, P. F.; Li, M. C.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure. Adv. Funct. Mater. 2019, 29, 1807651.

[35]

Wu, Y. D.; Jiang, Y. M.; Chen, W.; Yue, X.; Dong, C. L.; Qiu, M. Y.; Nga, T. T. T.; Yang, M.; Xia, Z. C.; Xie, C. et al. Selective electroreduction of 5-hydroxymethylfurfural to dimethylfuran in neutral electrolytes via hydrogen spillover and adsorption configuration adjustment. Adv. Mater. 2024, 36, 2307799.

[36]

Coutanceau, C.; Baranton, S.; Kouamé, R. S. B. Selective electrooxidation of glycerol into value-added chemicals: A short overview. Front. Chem. 2019, 7, 100.

[37]

Yang, Y. C.; Mu, T. C. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 2021, 23, 4228–4254.

[38]

Li, Y. Q.; Wei, Z. H.; Sun, Z. Y.; Zhai, H. Z.; Li, S. H.; Chen, W. X. Sulfur modified carbon-based single-atom catalysts for electrocatalytic reactions. Small 2024, 27, 2401900.

[39]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[40]

Zhan, Z. H.; Sun, Z. Y.; Wei, Z. H.; Li, Y. Q.; Chen, W. X.; Li, S. H.; Pang, S. P. Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion. Nano Res. 2024, 17, 3493–3515.

[41]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[42]

Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.

[43]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[44]

Iqbal, M. S.; Yao, Z. B.; Ruan, Y. K.; Iftikhar, R.; Hao, L. D.; Robertson, A. W.; Imran, S. M.; Sun, Z. Y. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023, 42, 1075–1097.

[45]

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

[46]

Zhang, X.; Shi, H.; Xu, B. Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. 2005, 117, 7294–7297.

[47]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[48]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[49]
Deng, ZW.; Liu, Y.; Lin, J.; Chen, W. X. Rational design and energy catalytic application of high-loading single-atom catalysts. Rare Met., in press, DOI: 10.1007/s12598-024-02727-4.
[50]

Li, X. S.; Colombo, L.; Ruoff, R. S. Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 2016, 28, 6247–6252.

[51]

Liu, S. W.; Wang, M. Y.; Yang, X. X.; Shi, Q. R.; Qiao, Z.; Lucero, M.; Ma, Q.; More, K. L.; Cullen, D. A.; Feng, Z. X. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem., Int. Ed. 2020, 59, 21698–21705.

[52]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[53]

Cai, C.; Han, S. B.; Wang, Q.; Gu, M. Direct observation of yolk–shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano 2019, 13, 8865–8871.

[54]

Cherevko, S.; Topalov, A. A.; Zeradjanin, A. R.; Keeley, G. P.; Mayrhofer, K. J. J. Temperature-dependent dissolution of polycrystalline platinum in sulfuric acid electrolyte. Electrocatalysis 2014, 5, 235–240.

[55]

Chen, R.; Yang, C. J.; Cai, W. Z.; Wang, H. Y.; Miao, J. W.; Zhang, L. P.; Chen, S. L.; Liu, B. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2017, 2, 1070–1075.

[56]

Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

[57]

Ye, L.; Duan, X. P.; Wu, S.; Wu, T. S.; Zhao, Y. X.; Robertson, A. W.; Chou, H. L.; Zheng, J. W.; Ayvalı, T.; Day, S. et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nat. Commun. 2019, 10, 914.

[58]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeO x -supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[59]

Liu, W.; Zhang, H. X.; Li, C. M.; Wang, X.; Liu, J. Q.; Zhang, X. W. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. J. Energy Chem. 2020, 47, 333–345.

[60]

Kasamatsu, Y.; Toyomura, K.; Haba, H.; Yokokita, T.; Shigekawa, Y.; Kino, A.; Yasuda, Y.; Komori, Y.; Kanaya, J.; Huang, M. H. et al. Co-precipitation behaviour of single atoms of rutherfordium in basic solutions. Nat. Chem. 2021, 13, 226–230.

[61]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[62]

Ohri, N.; Hua, Y. D.; Baidoun, R.; Kim, D. Pyrolytic synthesis of carbon-supported single-atom catalysts. Chem Catal. 2023, 3, 100837.

[63]

Pei, J. J.; Shang, H. S.; Mao, J. J.; Chen, Z.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Wang, Y.; Zhang, F.; Zhu, W. et al. A replacement strategy for regulating local environment of single-atom Co–S x N4− x catalysts to facilitate CO2 electroreduction. Nat. Commun. 2024, 15, 416.

[64]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 3, e202404968.

[65]

Kottwitz, M.; Li, Y. Y.; Wang, H. D.; Frenkel, A. I.; Nuzzo, R. G. Single atom catalysts: A review of characterization methods. Chem. Methods 2021, 1, 278–294.

[66]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[67]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu–S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[68]

Song, Z. X.; Li, J. J.; Davis, K. D.; Li, X. F.; Zhang, J. J.; Zhang, L.; Sun, X. L. Emerging applications of synchrotron radiation X-ray techniques in single atomic catalysts. Small Methods 2022, 6, 2201078.

[69]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y.; Cao, R. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[70]

Li, L. B. In situ synchrotron radiation techniques: Watching deformation-induced structural evolutions of polymers. Chin. J. Polym. Sci. 2018, 36, 1093–1102.

[71]

Yan, J. X.; Ye, F. H.; Dai, Q. B.; Ma, X. Y.; Fang, Z. H.; Dai, L. M.; Hu, C. G. Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. Nano Res. Energy 2023, 2, e9120047.

[72]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, 9120010.

[73]

Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

[74]

Gu, H. L.; Wu, J.; Zhang, L. M. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763.

[75]

Hu, Y. N.; Zhang, S.; Zhang, Z. D.; Zhou, H. X.; Li, B.; Sun, Z. Y.; Hu, X. M.; Yang, W. X.; Li, X. Y.; Wang, Y. et al. Enhancing photocatalytic-transfer semi-hydrogenation of alkynes Over Pd/C3N4 through dual regulation of nitrogen defects and the Mott–Schottky effect. Adv. Mater. 2023, 35, 2304130.

[76]

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

[77]

Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. E.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. 2022, 134, e202200211.

[78]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. 2020, 59, 19215–19221.

[79]

Zhang, J. W.; Yu, P. L.; Zeng, G. M.; Bao, F. X.; Yuan, Y. L.; Huang, H. W. Boosting HMF oxidation performance via decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands. J. Mater. Chem. A. 2021, 9, 9685–9691.

[80]

Chadderdon, D. J.; Xin, L.; Qi, J.; Qiu, Y.; Krishna, P.; More, K. L.; Li, W. Z. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem. 2014, 16, 3778–3786.

[81]

Zhou, C. M.; Shi, W. R.; Wan, X. Y.; Meng, Y.; Yao, Y.; Guo, Z.; Dai, Y. H.; Wang, C.; Yang, Y. H. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst. Catal. Today 2019, 330, 92–100.

[82]

Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B 2022, 311, 121357.

[83]

Cai, M. K.; Zhang, Y. W.; Zhao, Y. Y.; Liu, Q. L.; Li, Y. L.; Li, G. Q. Two-dimensional metal-organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization. J. Mater. Chem. A 2020, 8, 20386–20392.

[84]

Deng, X. H.; Kang, X. M.; Li, M.; Xiang, K.; Wang, C.; Guo, Z. P.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Coupling efficient biomass upgrading with H2 production via bifunctional Cu x S@NiCo-LDH core–shell nanoarray electrocatalysts. J. Mater. Chem. A 2020, 8, 1138–1146.

[85]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, 2007056.

[86]

Gu, W. L.; Pei, A.; Zhang, S. Y.; Jiang, F. F.; Jia, Y. Y.; Qin, Q. Z.; Du, R. A.; Li, Z. J.; Liu, R. F.; Qiu, Y. C. et al. Atomic-interface effect of single-atom Ru/CoO x for selective electrooxidation of 5-hydroxymethylfurfural. ACS Appl. Mater. Interfaces 2023, 15, 28036–28043.

[87]

Rozulan, N.; Halim, S. A.; Razali, N.; Lam, S. S. A review on direct carboxylation of glycerol waste to glycerol carbonate and its applications. Biomass Conv. Bioref. 2022, 12, 4665–4682.

[88]

Ke, Y. H.; Zhu, C. M.; Li, J. Y.; Liu, H.; Yuan, H. Catalytic oxidation of glycerol over Pt supported on MOF-derived carbon nanosheets. ACS Omega 2022, 7, 46452–46465.

[89]

Fang, J. J.; Chen, Q. Q.; Li, Z.; Mao, J. J.; Li, Y. D. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem. Commun. 2023, 59, 2854–2868.

[90]

Saptal, V. B.; Ruta, V.; Bajada, M. A.; Vilé, G. Single-atom catalysis in organic synthesis. Angew. Chem., Int. Ed. 2023, 62, e202219306 .

[91]

Jiang, K. H.; Li, Z. Y.; Zhang, Z. H.; Li, J. F.; Qi, X. Y.; Zhou, J.; Wang, X. J.; Wei, H.; Chu, H. B. Stable and active Au catalyst supported on CeMnO3 perovskite for selective oxidation of glycerol. Inorg. Chem. 2023, 62, 8145–8157.

[92]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[93]

Qian, Q. Z.; He, X. Y.; Li, Z. Y.; Chen, Y. X.; Feng, Y. F.; Cheng, M. Y.; Zhang, H. K.; Wang, W. T.; Xiao, C. et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 2023, 35, 2300935.

[94]

Yu, H. J.; Wang, W. X.; Mao, Q. Q.; Deng, K.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate. Appl. Catal. B 2023, 330, 122617.

[95]

Wang, Y.; Zhu, Y. Q.; Xie, Z. H.; Xu, S. M.; Xu, M.; Li, Z. Z.; Ma, L. N.; Ge, R. X.; Zhou, H.; Li, Z. H. et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 2022, 12, 12432–12443.

[96]

Pintauro, P. N.; Johnson, D. K.; Park, K.; Baizer, M. M.; Nobe, K. The paired electrochemical synthesis of sorbitol and gluconic acid in undivided flow cells. I. J. Appl. Electrochem. 1984, 14, 209–220.

[97]

Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568.

[98]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[99]

Zhu, Y. Q.; Zhou, H.; Dong, J. C.; Xu, S. M.; Xu, M.; Zheng, L. R.; Xu, Q.; Ma, L. N.; Li, Z. H.; Shao, M. F. et al. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation. Angew. Chem. 2023, 135, e202219048.

[100]

Zhao, P. P.; Sun, X. X.; Hao, S.; Zhang, Y. H.; Chen, J. X.; Zhang, H.; Dong, S. J. Glucose oxidase-like rhodium single-atom nanozymes: A mimic platform for biometabolism and electrometabolism of glucose oxidation at neutral pH. ACS Energy Lett. 2023, 8, 1697–1704.

[101]

Yin, H.; Bai, X.; Yang, Z. Y. Activating Ni nanoparticles into Ni single atoms by N doping for high-performance electrochemical sensing of glucose. Chem. Eng. J. 2023, 478, 147510.

[102]

Vangeel, T.; Schutyser, W.; Renders, T.; Sels, B. F. Perspective on lignin oxidation: Advances, challenges, and future directions. Top. Curr. Chem. 2018, 376, 30.

[103]

Natte, K.; Narani, A.; Goyal, V.; Sarki, N.; Jagadeesh, R. V. Synthesis of functional chemicals from lignin-derived monomers by selective organic transformations. Adv. Synth. Catal. 2020, 362, 5143–5169.

[104]

Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: Electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 2018, 118, 4834–4885.

[105]

Sannami, Y.; Kamitakahara, H.; Takano, T. TEMPO-mediated electro-oxidation reactions of non-phenolic β-O-4-type lignin model compounds. Holzforschung 2017, 71, 109–117.

[106]

Ko, M.; Pham, L. T. M.; Sa, Y. J.; Woo, J.; Nguyen, T. V. T.; Kim, J. H.; Oh, D.; Sharma, P.; Ryu, J.; Shin, T. J. et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 2019, 10, 5123.

[107]

González-Riopedre, G.; Fernández-García, M. I.; Gómez-Fórneas, E.; Maneiro, M. Biomimetic catalysts for oxidation of veratryl alcohol, a lignin model compound. Catalysts 2013, 3, 232–246.

[108]

Bailey, A.; Brooks, H. M. Electrolytic oxidation of lignin. J. Am. Chem. Soc. 1946, 68, 445–446.

[109]

Miao, J. J.; Ma, Y.; Wang, X.; Li, Y. Y.; Wang, H. Y.; Zhang, L. B.; Zhang, J.; Qin, Y.; Gao, J. Efficiently selective C(O–)–C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst. Appl. Catal. B 2023, 336, 122937.

[110]

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt–N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

[111]

Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

[112]

MacArthur, D. E. Beyond plastic waste. Science 2017, 358, 843.

[113]

Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

[114]

Zhang, F.; Zeng, M. H.; Yappert, R. D.; Sun, J. K.; Lee, Y. H.; LaPointe, A. M.; Peters, B.; Abu-Omar, M. M.; Scott, S. L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020, 370, 437–441.

[115]

Liu, K. S.; Wang, Y. X.; Liu, F. L.; Liu, C. X.; Shi, R.; Chen, Y. Selective electrocatalytic reforming of PET-derived ethylene glycol to formate with a Faraday efficiency of 93.2% at industrial-level current densities. Chem. Eng. J. 2023, 473, 145292.

[116]

Wang, J. Y.; Li, X.; Wang, M. L.; Zhang, T.; Chai, X. Y.; Lu, J. L.; Wang, T. F.; Zhao, Y. X.; Ma, D. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 2022, 12, 6722–6728.

[117]

Zhou, H., Ren, Y., Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[118]

Song, M. W.; Wu, Y. F.; Zhao, Z. Y.; Zheng, M. T.; Wang, C. L.; Lu, J. Corrosion engineering of part-per-million single atom Pt1/Ni(OH)2 electrocatalyst for PET upcycling at ampere-level current density. Adv. Mater. 2024, 36, 2403234.

[119]

Sanghez de Luna, G.; Ho, P. H.; Lolli, A.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Ag electrodeposited on Cu open-cell foams for the selective electroreduction of 5-hydroxymethylfurfural. ChemElectroChem 2020, 7, 1238–1247.

[120]

Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Electrocatalytic hydrogen evolution under neutral pH conditions: Current understandings, recent advances, and future prospects. Energy Environ. Sci. 2020, 13, 3185–3206.

[121]

Zhou, L.; Li, Y. Y.; Lu, Y. X.; Wang, S. Y.; Zou, Y. Q. pH-Induced selective electrocatalytic hydrogenation of furfural on Cu electrodes. Chin. J. Catal. 2022, 43, 3142–3153.

[122]

Sanghez de Luna, G.; Ho, P. H.; Sacco, A.; Hernández, S.; Velasco-Vélez, J. J.; Ospitali, F.; Paglianti, A.; Albonetti, S.; Fornasari, G.; Benito, P. AgCu bimetallic electrocatalysts for the reduction of biomass-derived compounds. ACS Appl. Mater. Interfaces 2021, 13, 23675–23688.

[123]

Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 2019, 21, 6210–6219.

[124]

Yue, X.; Zhao, W. X.; Wang, S. Y.; Zou, Y. Q. Selective electrocatalytic hydrogenation of 5-hydroxymethyl-furfural to 2,5-dihydroxymethylfuran on bimetallic PdCu alloy. Chin. J. Struct. Chem. 2022, 41, 2205063–2205069.

[125]

Panigrahy, S.; Mishra, R.; Panda, P.; Kempasiddaiah, M.; Barman, S. Carbon-supported Ag nanoparticle aerogel for electrocatalytic hydrogenation of 5-(hydroxymethyl)furfural to 2,5-hexanedione under acidic conditions. ACS Appl. Nano Mater. 2022, 5, 8314–8323.

[126]

Ji, K. Y.; Xu, M.; Xu, S. M.; Wang, Y.; Ge, R. X.; Hu, X. Y.; Sun, X. M.; Duan, H. H. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209849.

[127]

Yang, C. X.; Chen, H. A.; Peng, T.; Liang, B. Y.; Zhang, Y.; Zhao, W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chin. J. Catal. 2021, 42, 1831–1842.

[128]

Fu, J. T.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 2018, 564, 395–399.

[129]

Le Bras, J.; Chatterjee, D.; Muzart, J. A simple one-pot synthesis of β-alkoxy alcohols from alkenes. Tetrahedron Lett. 2005, 46, 4741–4743.

[130]

Peng, T.; Zhuang, T. T.; Yan, Y.; Qian, J.; Dick, G. R.; Behaghel de Bueren, J.; Hung, S. F.; Zhang, Y.; Wang, Z. Y.; Wicks, J. et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226–17235.

[131]

Zhao, K.; Quan, X.; Su, Y.; Qin, X.; Chen, S.; Yu, H. T. Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environ. Sci. Technol. 2021, 55, 14194–14203.

[132]

El-Sheikh, M. A.; Hadibarata, T.; Yuniarto, A.; Sathishkumar, P.; Abdel-Salam, E. M.; Alatar, A. A. Role of nanocatalyst in the treatment of organochlorine compounds—A review. Chemosphere 2021, 268, 128873.

[133]

Gao, H. Y.; Mao, L.; Shao, B.; Huang, C. H.; Zhu, B. Z. Why does 2,3,5,6-tetrachlorophenol generate the strongest intrinsic chemiluminescence among all nineteen chlorophenolic persistent organic pollutants during environmentally-friendly advanced oxidation process. Sci. Rep. 2016, 6, 33159.

[134]

Pavoni, B.; Drusian, D.; Giacometti, A.; Zanette, M. Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon. Water Res. 2006, 40, 3571–3579.

[135]

Yang, K. X.; Li, L.; Wang, Y. J.; Liu, J. X. Effects of substrate fluctuation on the performance, microbial community and metabolic function of a biofilter for gaseous dichloromethane treatment. Chemosphere 2020, 249, 126185.

[136]

Zhao, Z. W.; Zhang, W.; Liu, W.; Li, Y. Y.; Ye, J. Y.; Liang, J. L.; Tong, M. P. Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. Chem. Eng. J. 2021, 407, 127167.

[137]

Matsukami, H.; Kose, T.; Watanabe, M.; Takigami, H. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs. Sci. Total Environ. 2014, 493, 672–681.

[138]

Durante, C.; Huang, B. B.; Isse, A. A.; Gennaro, A. Electrocatalytic dechlorination of volatile organic compounds at copper cathode. Part II: Polychloroethanes. Appl. Catal. B 2012, 126, 355–362.

[139]

Isse, A. A.; Huang, B. B.; Durante, C.; Gennaro, A. Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: Polychloromethanes. Appl. Catal. B 2012, 126, 347–354.

[140]

Huang, B. B.; Isse, A. A.; Durante, C.; Wei, C. H.; Gennaro, A. Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochim. Acta 2012, 70, 50–61.

[141]

Qin, S. Y.; Lei, C.; Wang, X. X.; Chen, W. Q.; Huang, B. B. Electrocatalytic activation of organic chlorides via direct and indirect electron transfer using atomic vacancy control of palladium-based catalyst. Cell Rep. Phys. Sci. 2022, 3, 100713.

[142]

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[143]

Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Mu, J. C.; Wang, P. L.; Chen, G. H. Active sites in single-atom Fe–N x –C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937.

[144]

Lou, Y. Y.; Yin, S. H.; Yang, J.; Ji, L. F.; Fang, J. Y.; Zhang, S. Q.; Feng, M. B.; Yu, X.; Jiang, Y. X.; Sun, S. G. MOF-derived single site catalysts with electron-rich Fe–N4 sites for efficient elimination of trichloroacetamide DBP. Chem. Eng. J. 2022, 446, 137060.

[145]

Huang, D. H.; Kim, D. J.; Rigby, K.; Zhou, X. C.; Wu, X. H.; Meese, A.; Niu, J. F.; Stavitski, E.; Kim, J. H. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination. Environ. Sci. Technol. 2021, 55, 13306–13316.

[146]

Xiao, Z. H.; Chen, Y. G.; Wu, R. J.; He, Y. W.; Shi, C. F.; Wang, L. Y. OH regulator of highly dispersed Ru sites on host Pd nanocrystals for selective ethanol electro-oxidation. Nano Res. 2024, 17, 3863–3871.

[147]

Ayele, A. A.; Tsai, M. C.; Adam, D. B.; Awoke, Y. A.; Huang, W. H.; Chang, C. Y.; Liao, S. C.; Huang, P. Y.; Chen, J. L.; Pao, C. W. et al. Electrochemical oxidation of ethylene glycol on TiO2-supported platinum single-atom catalyst into valuable chemicals in alkaline media. Appl. Catal. A 2022, 646, 118861.

[148]

Ponticorvo, E.; Iuliano, M.; Cirillo, C.; Sarno, M. Selective C2 electrochemical synthesis from methane on modified alumina supporting single atom catalysts. Chem. Eng. J. 2023, 451, 139074.

[149]

Kim, C.; Min, H.; Kim, J.; Moon, J. H. Boosting electrochemical methane conversion by oxygen evolution reactions on Fe–N–C single atom catalysts. Energy Environ. Sci. 2023, 16, 3158–3165.

[150]

Yang, Z. H.; Chou, X. Y.; Kan, H. Y.; Xiao, Z. H.; Ding, Y. Nanoporous copper catalysts for the fluidized electrocatalytic hydrogenation of furfural to furfuryl alcohol. ACS Sustain. Chem. Eng. 2022, 10, 7418–7425.

[151]

Zhou, P.; Chen, Y.; Luan, P.; Zhang, X. L.; Yuan, Z. L.; Guo, S. X.; Gu, Q. F.; Johannessen, B.; Mollah, M.; Chaffee, A. L. et al. Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst under mild pH conditions. Green Chem. 2021, 23, 3028–3038.

[152]

Ma, W. X.; Chen, Z.; Bu, J.; Liu, Z. P.; Li, J. J.; Yan, C.; Cheng, L.; Zhang, L.; Zhang, H. P.; Zhang, J. C. et al. π-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon. J. Mater. Chem. A 2022, 10, 6122–6128.

[153]

Jiang, X. L.; Tang, L.; Dong, L.; Sheng, X. D.; Zhang, W. F.; Liu, Z.; Shen, J. H.; Jiang, H. L.; Li, C. Z. Cu single-atom catalysts for high-selectivity electrocatalytic acetylene semihydrogenation. Angew. Chem. 2023, 135, e202307848.

[154]
Mao, Q. Q.; Wang, W. X.; Wu, Y. J.; Yang, R. D.; Deng, K.; Yu, H. J.; Wang, Z. Q.; Wang, L.; Wang, H. J. High-density rare-earth single-atom-triggered unconventional transition of adsorption configuration on La1Pd monatomic alloy metallene for sustainable electrocatalytic alkynol semi-hydrogenation. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202404648.
[155]

Wang, H. Y.; Wang, S.; Song, Y. P.; Zhao, Y.; Li, Z. Y.; Shen, Y. X.; Peng, Z. Q.; Gao, D. F.; Wang, G. X.; Bao, X. H. Boosting electrocatalytic ethylene epoxidation by single atom modulation. Angew. Chem., Int. Ed. 2024, 63, e202402950.

[156]

Quan, Y. L.; Yu, R. H.; Zhu, J. X.; Guan, A. X.; Lv, X. M.; Yang, C.; Li, S.; Wu, J. S.; Zheng, G. F. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. J. Colloid Interface Sci. 2021, 601, 378–384.

Nano Research
Pages 9326-9344
Cite this article:
Deng Z, Guo Y, Sun Z, et al. Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts. Nano Research, 2024, 17(11): 9326-9344. https://doi.org/10.1007/s12274-024-6887-8
Topics:

512

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 10 June 2024
Revised: 08 July 2024
Accepted: 15 July 2024
Published: 09 August 2024
© Tsinghua University Press 2024
Return