Surface-enhanced Raman scattering (SERS) is a non-invasive spectroscopic technique that provides specific chemical fingerprint information for biomarkers in cancer and pathogen diagnosis. However, the SERS strategies are limited by the non-specific interactions between substrates and co-existing substances in biological matrices and the challenges of obtaining molecular fingerprint information from the complex vibrational spectrum. In recent years, the rapid development of novel substrates with high SERS activity has opened up new opportunities for their applications in cancer and pathogen diagnosis. The aim of this review is to present the recent progress and perspectives of novel SERS-based substrates for cancer and pathogen diagnostic applications. First, we will introduce recently developed SERS-active nanomaterials and discuss the influencing factors of the SERS signals. Second, the advantages of SERS in the diagnosis of cancer and pathogens will be given. Third, we will review the latest breakthroughs in cancer and pathogen detection research with SERS technology, as well as the new opportunities for SERS applications brought about by artificial intelligence (AI) technology. In addition, the novel microfluidic-SERS platforms for cancer and pathogens diagnosis will also be discussed. Finally, we will summarize the challenges and future perspectives of SERS technology in the field of early cancer diagnosis and rapid pathogen detection. It is highly expected that this review could benefit a comprehensive understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to accelerated clinical translation of SERS technology in cancer and pathogen diagnosis.
- Article type
- Year
- Co-author
Organic synthesis chemistry plays a crucial role in supporting social sustainable development and finds widespread applications across various fields. Electrocatalysis, with its benefits of high efficiency, mild reaction conditions, controllability, and environmental friendliness, stands out as one of the most effective strategies for driving the transformation of organic substrates. In recent years, nanocrystals (NCs) and single atom catalysts (SACs) have garnered significant attention in the realm of electrocatalytic organic transformation. This article presents a comprehensive overview of the applications of NCs and SACs in electrocatalytic organic transformation. It delves into advanced catalysts for electrocatalysis of representative substrates, covering both anodic oxidation and cathodic reduction aspects, and addresses their synthesis, characterization, catalytic mechanism, and performance. The ultimate goal of this review is to serve as a valuable reference and a source of inspiration for further exploration into the development of more effective catalysts for electrocatalytic organic transformation.
Designing catalysts with highly active, selectivity, and stability for electrocatalytic CO2 to formate is currently a severe challenge. Herein, we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO2 reduction reaction. As expected, atomically dispersed In-based catalysts with In-S1N3 atomic interface with asymmetrically coordinated exhibited high efficiency for CO2 reduction reaction (CO2RR) to formate. It achieved a maximum Faradaic efficiency (FE) of 94.3% towards formate generation at −0.8 V vs. reversible hydrogen electrode (RHE), outperforming that of catalysts with In-S2N2 and In-N4 atomic interface. And at a potential of −1.10 V vs. RHE, In-S1N3 achieves an impressive Faradaic efficiency of 93.7% in flow cell. The catalytic performance of In-S1N3 sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure (XANES) measurements under electrochemical conditions. Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO2RR at atomic scale.