AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators

Zhifeng Hu1,2Huamei Zhong1,2He Shan1,2Ruzhu Wang1,2( )
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
Engineering Research Center of Solar Power and Refrigeration, Ministry of Education (MOE), Shanghai 200240, China
Show Author Information

Graphical Abstract

Based on the working mechanism of droplet-based electricity generators (DEGs), the quick evaluation method and regulation strategy for the maximum instantaneous power and matching resistance are proposed, which powerfully promotes the evolution of DEGs for harvesting water droplet energy.

Abstract

Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.

Electronic Supplementary Material

Download File(s)
6893_ESM.pdf (1.3 MB)

References

[1]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[2]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[3]
Xu, J. X.; Wang, P. F.; Bai, Z. Y.; Cheng, H. H.; Wang, R. Z.; Qu, L. T.; Li, T. X. Sustainable moisture energy. Nat. Rev. Mater., in press, DOI: 10.1038/s41578-023-00643-0 .
[4]

Shan, H.; Zeng, Z. Y.; Yang, X. G.; Poredoš, P.; Yu, J.; Chen, Z. H.; Wang, R. Z. Harvesting thermal energy and freshwater from air through sorption thermal battery enabled by polyzwitterionic gel. ACS Energy Lett. 2023, 8, 5184–5191.

[5]

Shan, H.; Li, C. F.; Chen, Z. H.; Ying, W. J.; Poredoš, P.; Ye, Z. Y.; Pan, Q. W.; Wang, J. Y.; Wang, R. Z. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nat. Commun. 2022, 13, 5406.

[6]

Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.

[7]

Hasan, M. A. M.; Zhang, T. T.; Wu, H. T.; Yang, Y. Water droplet-based nanogenerators. Adv. Energy Mater. 2022, 12, 2201383.

[8]

Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

[9]

Li, L. X.; Wang, X.; Deng, W.; Yin, J.; Li, X. M.; Guo, W. L. Hydrovoltaic energy from water droplets: Device configurations, mechanisms, and applications. Droplet 2023, 2, e77.

[10]

Hu, Z. F.; Chu, F. Q.; Shan, H.; Wu, X. M.; Dong, Z. C.; Wang, R. Z. Understanding and utilizing droplet impact on superhydrophobic surfaces: Phenomena, mechanisms, regulations, applications, and beyond. Adv. Mater. 2024, 36, 2310177.

[11]

Zhang, Q.; Jiang, C. M.; Li, X. J.; Dai, S. F.; Ying, Y. B.; Ping, J. F. Highly efficient raindrop energy-based triboelectric nanogenerator for self-powered intelligent greenhouse. ACS Nano 2021, 15, 12314–12323.

[12]

Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

[13]

Zhang, Z. H.; Li, X. M.; Yin, J.; Xu, Y.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109–1119.

[14]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[15]

Li, L. X.; Li, X. M.; Deng, W.; Shen, C.; Chen, X. H.; Sheng, H.; Wang, X.; Zhou, J. X.; Li, J. D.; Zhu, Y. L. et al. Sparking potential over 1200 V by a falling water droplet. Sci. Adv. 2023, 9, eadi2993.

[16]

Li, Y.; Qin, X. Z.; Feng, Y. W.; Song, Y. X.; Yi, Z. R.; Zheng, H. X.; Zhou, P. Y.; Wu, C. Y.; Yang, S. Y.; Wang, L. L. et al. A droplet-based electricity generator incorporating kelvin water dropper with ultrahigh instantaneous power density. Droplet 2024, 3, e91.

[17]

Dong, J.; Xu, C. Y.; Zhu, L. L.; Zhao, X. S.; Zhou, H. Y.; Liu, H. W.; Xu, G. B.; Wang, G.; Zhou, G. D.; Zeng, Q. F. et al. A high voltage direct current droplet-based electricity generator inspired by thunderbolts. Nano Energy 2021, 90, 106567.

[18]

Zhang, Y. H.; Zhang, J. H.; Zheng, H. X.; Zhao, Y.; Chen, Y.; Zhou, Y. Y.; Liu, X. A flexible hybrid generator for efficient dual energy conversion from raindrops to electricity. Adv. Sci. 2024, 19, 2404310.

[19]

Zhang, Y. H.; Liu, J. Y.; Zhang, J. H.; Chen, Y.; Zhou, Y. Y.; Liu, X. A flexible droplet-based triboelectric-electromagnetic hybrid generator for raindrop energy harvesting. Nano Energy 2024, 121, 109253.

[20]

Zhang, J. H.; Chen, Y.; Zhang, Y. H.; Wu, S. Q.; Sun, J.; Liu, X.; Song, J. L. Fabrication and energy collection of superhydrophobic ultra-stretchable film. Adv. Funct. Mater. 2024, 34, 2400024.

[21]

Xu, X. T.; Wang, Y. L.; Li, P. Y.; Xu, W. H.; Wei, L.; Wang, Z. K.; Yang, Z. B. A leaf-mimic rain energy harvester by liquid–solid contact electrification and piezoelectricity. Nano Energy 2021, 90, 106573.

[22]

Liu, D.; Yang, P. Y.; Gao, Y. K.; Liu, N.; Ye, C. Y.; Zhou, L. L.; Zhang, J. Y.; Guo, Z. T.; Wang, J.; Wang, Z. L. A dual-mode triboelectric nanogenerator for efficiently harvesting droplet energy. Small 2024, 6, 2400698.

[23]

Wang, X.; Fang, S. M.; Tan, J.; Hu, T.; Chu, W. C.; Yin, J.; Zhou, J. X.; Guo, W. L. Dynamics for droplet-based electricity generators. Nano Energy 2021, 80, 105558.

[24]

Wu, H.; Mendel, N.; van den Ende, D.; Zhou, G. F.; Mugele, F. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. 2020, 125, 078301.

[25]

Zhang, N.; Zhang, H. M.; Xu, W. H.; Gu, H. J.; Ye, S. M.; Zheng, H. X.; Song, Y. X.; Wang, Z. K.; Zhou, X. F. A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 2022, 1, 56–64.

[26]

Zhan, F.; Wang, A. C.; Xu, L.; Lin, S. Q.; Shao, J. J.; Chen, X. Y.; Wang, Z. L. Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 2020, 14, 17565–17573.

[27]

Tang, Z.; Yang, D.; Guo, H. Y.; Lin, S. Q.; Wang, Z. L. Spontaneous wetting induced by contact-electrification at liquid–solid interface. Adv. Mater. 2024, 36, 2400451.

[28]

Ye, C. Y.; Liu, D.; Chen, P. F.; Cao, L. N. Y.; Li, X. J.; Jiang, T.; Wang, Z. L. An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 2023, 35, 2209713.

[29]

Chen, X.; Jiang, C. H.; Song, Y. H.; Shao, B. B.; Wu, Y. F.; Song, Z. H.; Song, T.; Wang, Y. S.; Sun, B. Q. Integrating hydrovoltaic device with triboelectric nanogenerator to achieve simultaneous energy harvesting from water droplet and vapor. Nano Energy 2022, 100, 107495.

[30]

Zhang, Q.; Li, Y. H.; Cai, H.; Yao, M. F.; Zhang, H. D.; Guo, L. Q.; Lv, Z. J.; Li, M. Q.; Lu, X. C.; Ren, C. et al. A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Adv. Mater. 2021, 33, 2105761.

[31]

Li, X. J.; Zhang, L. Q.; Feng, Y. G.; Zhang, Y. L.; Xu, H. Z.; Zhou, F.; Wang, D. A. Visualization of charge dynamics when water droplets bounce on a hydrophobic surface. ACS Nano 2023, 17, 23977–23988.

[32]

Hu, Z. F.; Chu, F. Q.; Wu, X. M. Double-peak characteristic of droplet impact force on superhydrophobic surfaces. Extreme Mech. Lett. 2022, 52, 101665.

[33]

Hu, Z. F.; Chu, F. Q.; Wu, X. M. Design principle of ridge-textured superhydrophobic surfaces for inducing pancake bouncing. Int. Commun. Heat Mass Transf. 2022, 136, 106167.

[34]

Clanet, C.; Béguin, C.; Richard, D.; Quéré, D. Maximal deformation of an impacting drop. J. Fluid Mech. 2004, 517, 199–208.

[35]

Hu, Z. F.; Chu, F. Q.; Wu, X. M.; Gañán-Calvo, A. M. Effects of ridge parameters on axial spreading of droplet impact on superhydrophobic surfaces. Phys. Fluids 2023, 35, 052105.

[36]

Hu, Z. F.; Chu, F. Q.; Wu, X. M.; Ding, S. Y.; Lin, Y. K. Bidirectional Transport of split droplets. Phys. Rev. Appl. 2022, 18, 044057.

[37]

Zhang, N.; Zhang, H. M.; Liu, Z. R.; Xu, W. H.; Zheng, H. X.; Song, Y. X.; Wang, Z. K.; Zhou, X. F. Performance transition in droplet-based electricity generator with optimized top electrode arrangements. Nano Energy 2023, 106, 108111.

[38]

Zhang, M. Y.; Bao, C. M.; Hu, C. S.; Huang, Y. A.; Yang, Y.; Su, Y. W. A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy. Nano Energy 2022, 104, 107992.

[39]

Li, Z.; Yang, D. M.; Zhang, Z. H.; Lin, S. Q.; Cao, B.; Wang, L. M.; Wang, Z. L.; Yin, F. H. A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy 2022, 100, 107443.

[40]

Kam, D.; Gwon, G.; Jang, S.; Yoo, D.; Park, S. J.; La, M.; Choi, D. Advancing energy harvesting efficiency from a single droplet: A mechanically guided 4D printed elastic hybrid droplet-based electricity generator. Adv. Mater. 2023, 35, 2303681.

[41]

Zhang, H.; Yin, K.; Wang, L. X.; Deng, Q. W.; He, Y. C.; Xiao, Z. X.; Li, G. Q.; Dai, G. Z. A robust droplet triboelectric nanogenerator with self-cleaning ability achieved by femtosecond laser. ACS Appl. Mater. Interfaces 2023, 15, 30902–30912.

[42]

Zhou, Z. K.; Qin, H. F.; Cui, P.; Wang, J. J.; Zhang, J. J.; Ge, Y.; Liu, H. M.; Feng, C.; Meng, Y.; Huang, Z. Y. et al. Enhancing the output of liquid–solid triboelectric nanogenerators through surface roughness optimization. ACS Appl. Mater. Interfaces 2024, 16, 4763–4771.

[43]

Wang, L. L.; Li, W. B.; Song, Y. X.; Xu, W. H.; Jin, Y. K.; Zhang, C.; Wang, Z. K. Monolithic integrated flexible yet robust droplet-based electricity generator. Adv. Funct. Mater. 2022, 32, 2206705.

[44]

Li, Z.; Cao, B.; Zhang, Z. H.; Wang, L. M.; Wang, Z. L. Rational TENG arrays as a panel for harvesting large-scale raindrop energy. IEnergy 2023, 2, 93–99.

[45]

Song, Y. X.; Xu, W. H.; Liu, Y.; Zheng, H. X.; Cui, M. M.; Zhou, Y. S.; Zhang, B. P.; Yan, X. T.; Wang, L. L.; Li, P. Y. et al. Achieving ultra-stable and superior electricity generation by integrating transistor-like design with lubricant armor. Innovation 2022, 3, 100301.

[46]

Wu, H.; Chen, Z. F.; Xu, G. Q.; Xu, J. B.; Wang, Z. K.; Zi, Y. L. Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl. Mater. Interfaces 2020, 12, 56060–56067.

[47]

Wu, H.; Mendel, N.; van der Ham, S.; Shui, L. L.; Zhou, G. F.; Mugele, F. Charge trapping-based electricity generator (CTEG): An ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets. Adv. Mater. 2020, 32, 2001699.

[48]

Liao, M. Z.; Xu, W. H.; Song, Y. X.; Pan, Z. H.; Zheng, H. X.; Li, Y. C.; Qin, X. Z.; Wang, L. L.; Lu, J.; Wang, Z. K. An integrated electricity generator harnessing water and solar energy featuring common-electrode configuration. Nano Energy 2023, 116, 108831.

[49]

Wang, H. L.; Zhang, B. J.; Chen, T. Y.; Mao, W. N.; Wang, Y. F. High-efficiency single-droplet energy harvester for self-sustainable environmental intelligent networks. Adv. Energy Mater. 2023, 13, 2302858.

[50]

Golnabi, H.; Matloob, M. R.; Bahar, M.; Sharifian, M. Investigation of electrical conductivity of different water liquids and electrolyte solutions. Iranian Phys. J. 2009, 3, 24–28.

[51]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[52]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

Nano Research
Pages 9999-10007
Cite this article:
Hu Z, Zhong H, Shan H, et al. Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators. Nano Research, 2024, 17(11): 9999-10007. https://doi.org/10.1007/s12274-024-6893-x
Topics:

282

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 June 2024
Revised: 05 July 2024
Accepted: 15 July 2024
Published: 06 August 2024
© Tsinghua University Press 2024
Return