Publications
Sort:
Research Article Issue
Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators
Nano Research 2024, 17(11): 9999-10007
Published: 06 August 2024
Abstract PDF (1.4 MB) Collect
Downloads:17

Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.

Research Article Issue
Comparison study of a novel solid desiccant heat pump system with EnergyPlus
Building Simulation 2014, 7(5): 467-476
Published: 07 March 2014
Abstract PDF (535.6 KB) Collect
Downloads:23

The variable refrigerant flow (VRF) air conditioning system usually needs to be operated with a ventilation system, since the VRF system cannot provide fresh air. The commonly used ventilation unit with the VRF system is the heat recovery ventilation (HRV) unit due to its merits of energy saving. In this study, a novel solid desiccant heat pump unit (DESICA) is introduced and mathematical model of DESICA is developed based on the dynamic building energy simulation software—EnergyPlus. The mathematical model is validated with experimental results. Based on the model, performance comparison study is conducted among the novel joint DESICA and VRF (DES&VRF) system, the conventional joint HRV and VRF (HRV&VRF) system, and the original VRF standalone with ventilation (VRFSA) system in an office building in Shanghai. Simulation results show that, HRV&VRF and VRFSA can handle the sensible load, though both of them cannot well deal with the latent load. On the contrary, DES&VRF system can keep both indoor temperature and humidity ratio at the target value, resulting in the best indoor thermal comfort than the other two systems. In addition, through the whole year, DES&VRF consumes 5% more energy than VRFSA and 20% less energy than HRV&VRF.

Total 2