Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a cathode material for potassium-ion batteries (PIBs), manganese-based layered oxides have attracted widespread attention due to their low cost, ease of synthesis, and high performance. However, the Jahn–Teller effect caused by Mn3+ and the irreversible phase transformation of the structure leads to poor cycle stability, limiting the development of layered oxides in PIBs. Herein, we demonstrate the use of phase-transition-free CaTiO3 as rivets in K0.5Mn0.9Ti0.1O2 by a simple solid-state method. As verified by the in situ X-ray diffraction, the CaTiO3 rivets effectively prevent the slippage of the transition metal layer during charge and discharge, inhibiting structural degradation. As a result, the obtained K0.5Mn0.9Ti0.1O2-0.02CaTiO3 shows excellent cycling stability and rate performance, with high capacities of 119.3 and 70.1 mAh·g−1 at 20 and 1000 mA·g−1, respectively. At 200 mA·g−1, the capacity retention remains 94.7% after more than 300 cycles. This work represents a new avenue for designing and optimizing layered cathode materials for PIBs and other batteries.
Yi, X. H.; Fu, H. W.; Rao, A. M.; Zhang, Y. J.; Zhou, J.; Wang, C. X.; Lu, B. A. Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustainability 2024, 7, 326–337.
Guan, J.; Rao, A. M.; Zhou, J.; Yu, X. Z.; Lu, B. A. Structure-optimized phosphorene for super-stable potassium storage. Adv. Funct. Mater. 2022, 32, 2203522.
Yi, X. H.; Feng, Y. H.; Rao, A. M.; Zhou, J.; Wang, C. X.; Lu, B. A. Quasi-solid aqueous electrolytes for low-cost sustainable alkali-metal batteries. Adv. Mater. 2023, 35, 2302280.
Geng, Y. H.; Fu, H. W.; Hu, Y. Y.; Rao, A. M.; Fan, L.; Zhou, J.; Lu, B. A. Molecular-level design for a phosphate-based electrolyte for stable potassium-ion batteries. Appl. Phys. Lett. 2024, 124, 063901.
Yi, X. H.; Rao, A. M.; Zhou, J.; Lu, B. A. Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nano-Micro Lett. 2023, 15, 200.
Hu, Y. Y.; Fu, H. W.; Geng, Y. H.; Yang, X. T.; Fan, L.; Zhou, J.; Lu, B. A. Chloro-functionalized ether-based electrolyte for high-voltage and stable potassium-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202403269.
Zhang, D. W.; Fu, H. W.; Ma, X. M.; Yu, X. Z.; Li, F. X.; Zhou, J.; Lu, B. A. Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew. Chem., Int. Ed. 2024, 63, e202405153.
Ma, X. M.; Zhang, D. W.; Wen, J.; Fan, L.; Rao, A. M.; Lu, B. A. Sustainable electrolytes: Design principles and recent advances. Chem.—Eur. J. 2024, 30, e202400332.
Caixiang, Z.; Hao, J. X.; Zhou, J.; Yu, X. Z.; Lu, B. A. Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy Mater. 2023, 13, 2203126.
Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.
Hao, J. X.; Xiong, K.; Zhou, J.; Rao, A. M.; Wang, X. Y.; Liu, H.; Lu, B. A. Yolk–shell P3-type K0.5[Mn0.85Ni0.1Co0.05]O2: A low-cost cathode for potassium-ion batteries. Energy Environ. Mater. 2022, 5, 261–269.
Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.
Hu, Y. Y.; Fan, L.; Rao, A. M.; Yu, W. J.; Zhuoma, C. X.; Feng, Y. H.; Qin, Z. H.; Zhou, J.; Lu, B. A. Cyclic-anion salt for high-voltage stable potassium-metal batteries. Nat. Sci. Rev. 2022, 9, nwac134.
Wu, L. C.; Fu, H. W.; Li, S.; Zhu, J.; Zhou, J.; Rao, A. M.; Cha, L. M.; Guo, K. K.; Wen, S. C.; Lu, B. A. Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 2023, 14, 644.
Lyu, W.; Yu, X. Z.; Lv, Y. W.; Rao, A. M.; Zhou, J.; Lu, B. A. Building stable solid-state potassium metal batteries. Adv. Mater. 2024, 36, 2305795.
Yang, Y. H.; Zhou, J.; Rao, A. M.; Lu, B. A. Bio-inspired carbon electrodes for metal-ion batteries. Nanoscale 2024, 16, 5893–5902.
Gu, M. Y.; Rao, A. M.; Zhou, J.; Lu, B. A. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem. Sci. 2024, 15, 2323–2350.
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.
Xiao, Z. T.; Xia, F. J.; Xu, L. H.; Wang, X. P.; Meng, J. S.; Wang, H.; Zhang, X.; Geng, L. S.; Wu, J. S.; Mai, L. Q. Suppressing the Jahn–Teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2108244.
Wu, L. C.; Gu, M. Y.; Feng, Y. H.; Chen, S. H.; Fan, L.; Yu, X. Z.; Guo, K. K.; Zhou, J.; Lu, B. A. Layered superconductor Cu0.11TiSe2 as a high-stable K-cathode. Adv. Funct. Mater. 2022, 32, 2109893.
Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
Liao, J. Y.; Han, Y.; Zhang, Z. Z.; Xu, J. Y.; Li, J. B.; Zhou, X. S. Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 2021, 4, 178–200.
Liu, S. D.; Kang, L.; Jun, S. C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 2021, 33, 2004689.
Xu, Y. S.; Guo, S. J.; Tao, X. S.; Sun, Y. G.; Ma, J. M.; Liu, C. T.; Cao, A. M. High-performance cathode materials for potassium-ion batteries: Structural design and electrochemical properties. Adv. Mater. 2021, 33, 2100409.
Zhang, X. Y.; Wei, Z. X.; Dinh, K. N.; Chen, N.; Chen, G.; Du, F.; Yan, Q. Y. Layered oxide cathode for potassium-ion battery: Recent progress and prospective. Small 2020, 16, 2002700.
Wang, M. Y.; Zhang, H. M.; Cui, J.; Yao, S. S.; Shen, X.; Park, T. J.; Kim, J. K. Recent advances in emerging nonaqueous K-ion batteries: From mechanistic insights to practical applications. Energy Storage Mater. 2021, 39, 305–346.
Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.
Wang, L. G.; Liu, T. C.; Wu, T. P.; Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022, 611, 61–67.
Zhang, Y. X.; Hu, A. Y.; Xia, D. W.; Hwang, S.; Sainio, S.; Nordlund, D.; Michel, F. M.; Moore, R. B.; Li, L. X.; Lin, F. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 2023, 18, 790–797.
Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review. Energy Environ. Sci. 2018, 11, 243–257.
Lei, K. X.; Zhu, Z.; Yin, Z. X.; Yan, P. F.; Li, F. J.; Chen, J. Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage. Chem 2019, 5, 3220–3231.
Xu, Y. S.; Zhou, Y. N.; Zhang, Q. H.; Qi, M. Y.; Guo, S. J.; Luo, J. M.; Sun, Y. G.; Gu, L.; Cao, A. M.; Wan, L. J. Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chem. Eng. J. 2021, 412, 128735.
Liu, L. Y.; Liang, J. J.; Wang, W. L.; Han, C.; Xia, Q. B.; Ke, X.; Liu, J.; Gu, Q. F.; Shi, Z. C.; Chou, S. L. et al. A P3-Type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect. ACS Appl. Mater. Interfaces 2021, 13, 28369–28377.
Xu, Y. S.; Qi, M. Y.; Zhang, Q. H.; Meng, F. Q.; Zhou, Y. N.; Guo, S. J.; Sun, Y. G.; Gu, L.; Chang, B. B.; Liu, C. T. et al. Anion doping for layered oxides with a solid–solution reaction for potassium-ion battery cathodes. ACS Appl. Mater. Interfaces 2022, 14, 13379–13387.
Lin, B. W.; Zhu, X. H.; Fang, L. Z.; Liu, X. Y.; Li, S.; Zhai, T.; Xue, L.; Guo, Q. B.; Xu, J.; Xia, H. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, 1900060.
Zhang, X. Y.; Yang, X.; Sun, G.; Yao, S. Y.; Xie, Y.; Zhang, W.; Liu, C. B.; Wang, X. Q.; Yang, R.; Jin, X. et al. Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204318.
Li, S.; Wu, L. C.; Fu, H. W.; Rao, A. M.; Cha, L. M.; Zhou, J.; Lu, B. A. Entropy-tuned layered oxide cathodes for potassium-ion batteries. Small Methods 2023, 7, 2300893.
Lemanov, V. V.; Sotnikov, A. V.; Smirnova, E. P.; Weihnacht, M.; Kunze, R. Perovskite CaTiO3 as an incipient ferroelectric. Solid State Commun. 1999, 110, 611–614.
Yang, Z. Z.; Leon, N. J.; Liao, C.; Ingram, B. J.; Trahey, L. Effect of salt concentration on the interfacial solvation structure and early stage of solid-electrolyte interphase formation in Ca(BH4)2/THF for Ca batteries. ACS Appl. Mater. Interfaces 2023, 15, 25018–25028.
Weng, J. Y.; Duan, J.; Sun, C. L.; Liu, P.; Li, A. X.; Zhou, P. F.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.
Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.
Kim, H.; Kim, J. C.; Bo, S. H.; Shi, T.; Kwon, D. H.; Ceder, G. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 2017, 7, 1700098.
Duan, L. P.; Xu, J. Z.; Xu, Y. F.; Tian, R. Q.; Sun, Y. Y.; Zhu, C. N.; Mo, X. Y.; Zhou, X. S. Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries. J. Energy Chem. 2023, 76, 332–338.
Zhong, W. T.; Liu, X. Z.; Cheng, Q.; Tan, T.; Huang, Q. H.; Deng, Q.; Hu, J. H.; Yang, C. H. Suppressing the interlayer-gliding of layered P3-type K0.5Mn0.7Co0.2Fe0.1O2 cathode materials on electrochemical potassium-ion storage. Appl. Phys. Rev. 2021, 8, 031412.
Wang, H.; Peng, H. Y.; Xiao, Z. T.; Yu, R. H.; Liu, F.; Zhu, Z.; Zhou, L.; Wu, J. S. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy Storage Mater. 2023, 58, 101–109.
Liu, C. L.; Luo, S. H.; Huang, H. B.; Wang, Z. Y.; Hao, A. M.; Zhai, Y. C.; Wang, Z. W. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150–154.
Dang, R. B.; Li, N.; Yang, Y. Q.; Wu, K.; Li, Q. Y.; Lee, Y. L.; Liu, X. F.; Hu, Z. B.; Xiao, X. L. Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries. J. Power Sources 2020, 464, 228190.
Bianchini, M.; Wang, J. Y.; Clément, R.; Ceder, G. A first-principles and experimental investigation of nickel solubility into the P2 Na x CoO2 sodium-ion cathode. Adv. Energy Mater. 2018, 8, 1801446.
Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.
Fan, X. M.; Ou, X.; Zhao, W. G.; Liu, Y.; Zhang, B.; Zhang, J. F.; Zou, L. F.; Seidl, L.; Li, Y. Z.; Hu, G. R. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 2021, 12, 5320.
Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569–1578.
Wen, C. J.; Boukamp, B. A.; Huggins, R. A.; Weppner, W. Thermodynamic and mass transport properties of “LiAl”. J. Electrochem. Soc. 1979, 126, 2258–2266.