AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phase-transition-free rivets for layered oxide potassium cathodes

Jie Chen1Apparao M. Rao2Caitian Gao1( )Jiang Zhou3Limei Cha4,5,6( )Xiaoming Yuan7Bingan Lu1( )
School of Physics and Electronics, Hunan University, Changsha 410082, China
Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Materials Science and Engineering program, Guangdong Technion–Israel Institute of Technology, Shantou 515063, China
Materials Science and Engineering program, Technion–Israel Institute of Technology, Haifa 32000, Israel
MATEC Key Lab, Guangdong Technion–Israel Institute of Technology, Shantou 515063, China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

We demonstrated the use of phase-transition-free CaTiO3 stabilized layered oxide as rivets in K0.5Mn0.9Ti0.1O2.

Abstract

As a cathode material for potassium-ion batteries (PIBs), manganese-based layered oxides have attracted widespread attention due to their low cost, ease of synthesis, and high performance. However, the Jahn–Teller effect caused by Mn3+ and the irreversible phase transformation of the structure leads to poor cycle stability, limiting the development of layered oxides in PIBs. Herein, we demonstrate the use of phase-transition-free CaTiO3 as rivets in K0.5Mn0.9Ti0.1O2 by a simple solid-state method. As verified by the in situ X-ray diffraction, the CaTiO3 rivets effectively prevent the slippage of the transition metal layer during charge and discharge, inhibiting structural degradation. As a result, the obtained K0.5Mn0.9Ti0.1O2-0.02CaTiO3 shows excellent cycling stability and rate performance, with high capacities of 119.3 and 70.1 mAh·g−1 at 20 and 1000 mA·g−1, respectively. At 200 mA·g−1, the capacity retention remains 94.7% after more than 300 cycles. This work represents a new avenue for designing and optimizing layered cathode materials for PIBs and other batteries.

Electronic Supplementary Material

Download File(s)
6901_ESM.pdf (947.4 KB)

References

[1]

Yi, X. H.; Fu, H. W.; Rao, A. M.; Zhang, Y. J.; Zhou, J.; Wang, C. X.; Lu, B. A. Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustainability 2024, 7, 326–337.

[2]

Guan, J.; Rao, A. M.; Zhou, J.; Yu, X. Z.; Lu, B. A. Structure-optimized phosphorene for super-stable potassium storage. Adv. Funct. Mater. 2022, 32, 2203522.

[3]

Yi, X. H.; Feng, Y. H.; Rao, A. M.; Zhou, J.; Wang, C. X.; Lu, B. A. Quasi-solid aqueous electrolytes for low-cost sustainable alkali-metal batteries. Adv. Mater. 2023, 35, 2302280.

[4]

Geng, Y. H.; Fu, H. W.; Hu, Y. Y.; Rao, A. M.; Fan, L.; Zhou, J.; Lu, B. A. Molecular-level design for a phosphate-based electrolyte for stable potassium-ion batteries. Appl. Phys. Lett. 2024, 124, 063901.

[5]

Yi, X. H.; Rao, A. M.; Zhou, J.; Lu, B. A. Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nano-Micro Lett. 2023, 15, 200.

[6]

Hu, Y. Y.; Fu, H. W.; Geng, Y. H.; Yang, X. T.; Fan, L.; Zhou, J.; Lu, B. A. Chloro-functionalized ether-based electrolyte for high-voltage and stable potassium-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202403269.

[7]

Zhang, D. W.; Fu, H. W.; Ma, X. M.; Yu, X. Z.; Li, F. X.; Zhou, J.; Lu, B. A. Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew. Chem., Int. Ed. 2024, 63, e202405153.

[8]

Ma, X. M.; Zhang, D. W.; Wen, J.; Fan, L.; Rao, A. M.; Lu, B. A. Sustainable electrolytes: Design principles and recent advances. Chem.—Eur. J. 2024, 30, e202400332.

[9]

Caixiang, Z.; Hao, J. X.; Zhou, J.; Yu, X. Z.; Lu, B. A. Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy Mater. 2023, 13, 2203126.

[10]

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

[11]

Hao, J. X.; Xiong, K.; Zhou, J.; Rao, A. M.; Wang, X. Y.; Liu, H.; Lu, B. A. Yolk–shell P3-type K0.5[Mn0.85Ni0.1Co0.05]O2: A low-cost cathode for potassium-ion batteries. Energy Environ. Mater. 2022, 5, 261–269.

[12]

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

[13]

Hu, Y. Y.; Fan, L.; Rao, A. M.; Yu, W. J.; Zhuoma, C. X.; Feng, Y. H.; Qin, Z. H.; Zhou, J.; Lu, B. A. Cyclic-anion salt for high-voltage stable potassium-metal batteries. Nat. Sci. Rev. 2022, 9, nwac134.

[14]

Wu, L. C.; Fu, H. W.; Li, S.; Zhu, J.; Zhou, J.; Rao, A. M.; Cha, L. M.; Guo, K. K.; Wen, S. C.; Lu, B. A. Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 2023, 14, 644.

[15]

Lyu, W.; Yu, X. Z.; Lv, Y. W.; Rao, A. M.; Zhou, J.; Lu, B. A. Building stable solid-state potassium metal batteries. Adv. Mater. 2024, 36, 2305795.

[16]

Yang, Y. H.; Zhou, J.; Rao, A. M.; Lu, B. A. Bio-inspired carbon electrodes for metal-ion batteries. Nanoscale 2024, 16, 5893–5902.

[17]

Gu, M. Y.; Rao, A. M.; Zhou, J.; Lu, B. A. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem. Sci. 2024, 15, 2323–2350.

[18]

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

[19]

Xiao, Z. T.; Xia, F. J.; Xu, L. H.; Wang, X. P.; Meng, J. S.; Wang, H.; Zhang, X.; Geng, L. S.; Wu, J. S.; Mai, L. Q. Suppressing the Jahn–Teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2108244.

[20]

Wu, L. C.; Gu, M. Y.; Feng, Y. H.; Chen, S. H.; Fan, L.; Yu, X. Z.; Guo, K. K.; Zhou, J.; Lu, B. A. Layered superconductor Cu0.11TiSe2 as a high-stable K-cathode. Adv. Funct. Mater. 2022, 32, 2109893.

[21]

Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

[22]

Liao, J. Y.; Han, Y.; Zhang, Z. Z.; Xu, J. Y.; Li, J. B.; Zhou, X. S. Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 2021, 4, 178–200.

[23]

Liu, S. D.; Kang, L.; Jun, S. C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 2021, 33, 2004689.

[24]

Xu, Y. S.; Guo, S. J.; Tao, X. S.; Sun, Y. G.; Ma, J. M.; Liu, C. T.; Cao, A. M. High-performance cathode materials for potassium-ion batteries: Structural design and electrochemical properties. Adv. Mater. 2021, 33, 2100409.

[25]

Zhang, X. Y.; Wei, Z. X.; Dinh, K. N.; Chen, N.; Chen, G.; Du, F.; Yan, Q. Y. Layered oxide cathode for potassium-ion battery: Recent progress and prospective. Small 2020, 16, 2002700.

[26]

Wang, M. Y.; Zhang, H. M.; Cui, J.; Yao, S. S.; Shen, X.; Park, T. J.; Kim, J. K. Recent advances in emerging nonaqueous K-ion batteries: From mechanistic insights to practical applications. Energy Storage Mater. 2021, 39, 305–346.

[27]

Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.

[28]

Wang, L. G.; Liu, T. C.; Wu, T. P.; Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022, 611, 61–67.

[29]

Zhang, Y. X.; Hu, A. Y.; Xia, D. W.; Hwang, S.; Sainio, S.; Nordlund, D.; Michel, F. M.; Moore, R. B.; Li, L. X.; Lin, F. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 2023, 18, 790–797.

[30]

Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review. Energy Environ. Sci. 2018, 11, 243–257.

[31]

Lei, K. X.; Zhu, Z.; Yin, Z. X.; Yan, P. F.; Li, F. J.; Chen, J. Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage. Chem 2019, 5, 3220–3231.

[32]

Xu, Y. S.; Zhou, Y. N.; Zhang, Q. H.; Qi, M. Y.; Guo, S. J.; Luo, J. M.; Sun, Y. G.; Gu, L.; Cao, A. M.; Wan, L. J. Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chem. Eng. J. 2021, 412, 128735.

[33]

Liu, L. Y.; Liang, J. J.; Wang, W. L.; Han, C.; Xia, Q. B.; Ke, X.; Liu, J.; Gu, Q. F.; Shi, Z. C.; Chou, S. L. et al. A P3-Type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect. ACS Appl. Mater. Interfaces 2021, 13, 28369–28377.

[34]

Xu, Y. S.; Qi, M. Y.; Zhang, Q. H.; Meng, F. Q.; Zhou, Y. N.; Guo, S. J.; Sun, Y. G.; Gu, L.; Chang, B. B.; Liu, C. T. et al. Anion doping for layered oxides with a solid–solution reaction for potassium-ion battery cathodes. ACS Appl. Mater. Interfaces 2022, 14, 13379–13387.

[35]

Lin, B. W.; Zhu, X. H.; Fang, L. Z.; Liu, X. Y.; Li, S.; Zhai, T.; Xue, L.; Guo, Q. B.; Xu, J.; Xia, H. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, 1900060.

[36]

Zhang, X. Y.; Yang, X.; Sun, G.; Yao, S. Y.; Xie, Y.; Zhang, W.; Liu, C. B.; Wang, X. Q.; Yang, R.; Jin, X. et al. Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204318.

[37]

Li, S.; Wu, L. C.; Fu, H. W.; Rao, A. M.; Cha, L. M.; Zhou, J.; Lu, B. A. Entropy-tuned layered oxide cathodes for potassium-ion batteries. Small Methods 2023, 7, 2300893.

[38]

Lemanov, V. V.; Sotnikov, A. V.; Smirnova, E. P.; Weihnacht, M.; Kunze, R. Perovskite CaTiO3 as an incipient ferroelectric. Solid State Commun. 1999, 110, 611–614.

[39]

Yang, Z. Z.; Leon, N. J.; Liao, C.; Ingram, B. J.; Trahey, L. Effect of salt concentration on the interfacial solvation structure and early stage of solid-electrolyte interphase formation in Ca(BH4)2/THF for Ca batteries. ACS Appl. Mater. Interfaces 2023, 15, 25018–25028.

[40]

Weng, J. Y.; Duan, J.; Sun, C. L.; Liu, P.; Li, A. X.; Zhou, P. F.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.

[41]

Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

[42]

Kim, H.; Kim, J. C.; Bo, S. H.; Shi, T.; Kwon, D. H.; Ceder, G. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 2017, 7, 1700098.

[43]

Duan, L. P.; Xu, J. Z.; Xu, Y. F.; Tian, R. Q.; Sun, Y. Y.; Zhu, C. N.; Mo, X. Y.; Zhou, X. S. Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries. J. Energy Chem. 2023, 76, 332–338.

[44]

Zhong, W. T.; Liu, X. Z.; Cheng, Q.; Tan, T.; Huang, Q. H.; Deng, Q.; Hu, J. H.; Yang, C. H. Suppressing the interlayer-gliding of layered P3-type K0.5Mn0.7Co0.2Fe0.1O2 cathode materials on electrochemical potassium-ion storage. Appl. Phys. Rev. 2021, 8, 031412.

[45]

Wang, H.; Peng, H. Y.; Xiao, Z. T.; Yu, R. H.; Liu, F.; Zhu, Z.; Zhou, L.; Wu, J. S. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy Storage Mater. 2023, 58, 101–109.

[46]

Liu, C. L.; Luo, S. H.; Huang, H. B.; Wang, Z. Y.; Hao, A. M.; Zhai, Y. C.; Wang, Z. W. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150–154.

[47]

Dang, R. B.; Li, N.; Yang, Y. Q.; Wu, K.; Li, Q. Y.; Lee, Y. L.; Liu, X. F.; Hu, Z. B.; Xiao, X. L. Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries. J. Power Sources 2020, 464, 228190.

[48]

Bianchini, M.; Wang, J. Y.; Clément, R.; Ceder, G. A first-principles and experimental investigation of nickel solubility into the P2 Na x CoO2 sodium-ion cathode. Adv. Energy Mater. 2018, 8, 1801446.

[49]

Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

[50]

Fan, X. M.; Ou, X.; Zhao, W. G.; Liu, Y.; Zhang, B.; Zhang, J. F.; Zou, L. F.; Seidl, L.; Li, Y. Z.; Hu, G. R. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 2021, 12, 5320.

[51]

Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569–1578.

[52]

Wen, C. J.; Boukamp, B. A.; Huggins, R. A.; Weppner, W. Thermodynamic and mass transport properties of “LiAl”. J. Electrochem. Soc. 1979, 126, 2258–2266.

Nano Research
Pages 9671-9678
Cite this article:
Chen J, Rao AM, Gao C, et al. Phase-transition-free rivets for layered oxide potassium cathodes. Nano Research, 2024, 17(11): 9671-9678. https://doi.org/10.1007/s12274-024-6901-5
Topics:

438

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 June 2024
Revised: 18 July 2024
Accepted: 19 July 2024
Published: 13 August 2024
© Tsinghua University Press 2024
Return