AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

S-scheme quantum dots heterojunction photocatalysts: Assembly types, mechanism insights, and design strategies

Jin-Tao Ru1,2Chen-Ho Tung1,2Li-Zhu Wu1,2( )
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Coupling quantum dots (QDs) in S-scheme (referred to as QD-S-scheme) is an efficient approach for photocatalysis. However, a comprehensive review of S-scheme QDs heterojunction photocatalysts is, to the best of our knowledge, absent. Herein, a concise overview of the unique advantages and limitations of QDs in photocatalytic reactions, as well as the charge transfer mechanism of the S-scheme is first introduced. Secondly, a thorough summary and evaluation of the types and assembly strategies of QDs are presented, highlighting the pivotal role of the QD-S-scheme heterojunction interface in photocatalytic performance. Then, the characterization methods for the charge transfer from the bulk to the interface and surface are discussed from the perspectives of the built-in electric field (BEF), steady-state and transient charge transfer processes, and photochemical reactions. And the design principles and optimization strategies for surface modulation, interface construction, and heterojunction design are also illustrated. Finally, insights on the current research status, challenges, and prospects of the QD-S-scheme are presented to contribute the development of QD-S-scheme heterojunction photocatalysts.

References

[1]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[2]

García De Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[3]

Pandey, A.; Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 2008, 322, 929–932.

[4]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[5]

Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

[6]

Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 2017, 117, 712–757.

[7]

Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

[8]

Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.

[9]

Li, X. B.; Xin, Z. K.; Xia, S. G.; Gao, X. Y.; Tung, C. H.; Wu, L. Z. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem. Soc. Rev. 2020, 49, 9028–9056.

[10]

Yu, Y. T.; Ma, T. Y.; Huang, H. W. Semiconducting quantum dots for energy conversion and storage. Adv. Funct. Mater. 2023, 33, 2213770.

[11]

Huang, Z. Y.; Tung, C. H.; Wu, L. Z. Quantum dot-sensitized triplet-triplet annihilation photon upconversion for solar energy conversion and beyond. Acc. Mater. Res. 2024, 5, 136–145.

[12]

Sun, J. J.; Goldys, E. M. Linear absorption and molar extinction coefficients in direct semiconductor quantum dots. J. Phys. Chem. C 2008, 112, 9261–9266.

[13]

Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

[14]

Zhao, J.; Holmes, M. A.; Osterloh, F. E. Quantum confinement controls photocatalysis: A free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 2013, 7, 4316–4325.

[15]

Wheeler, D. A.; Zhang, J. Z. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878–2896.

[16]

Zhang, Y. Z.; Li, Y. K.; Xin, X.; Wang, Y. J.; Guo, P.; Wang, R. L.; Wang, B. L.; Huang, W. J.; Sobrido, A. J.; Li, X. H. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 2023, 8, 504–514.

[17]

Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.

[18]

Witzel, W. M.; Shabaev, A.; Hellberg, C. S.; Jacobs, V. L.; Efros, A. L. Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon. Phys. Rev. Lett. 2010, 105, 137401.

[19]

Turaeva, N. N.; Oksengendler, B. L.; Uralov, I. Synergetics in multiple exciton generation effect in quantum dots. Appl. Phys. Lett. 2011, 98, 243103.

[20]

Jasieniak, J.; Mulvaney, P. From Cd-rich to Se-rich-the manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841–2848.

[21]

Kilina, S. V.; Tamukong, P. K.; Kilin, D. S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 2016, 49, 2127–2135.

[22]

Kershaw, S. V.; Jing, L. H.; Huang, X. D.; Gao, M. Y.; Rogach, A. L. Materials aspects of semiconductor nanocrystals for optoelectronic applications. Mater. Horiz. 2017, 4, 155–205.

[23]

Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv. Mater. 2019, 31, 1900709.

[24]

Xin, Z. K.; Huang, M. Y.; Wang, Y.; Gao, Y. J.; Guo, Q.; Li, X. B.; Tung, C. H.; Wu, L. Z. Reductive carbon-carbon coupling on metal sites regulates photocatalytic CO2 reduction in water using ZnSe quantum dots. Angew. Chem., Int. Ed. 2022, 61, e202207222.

[25]

Xin, Z. K.; Gao, Y. J.; Gao, Y. Y.; Song, H. W.; Zhao, J. Q.; Fan, F. T.; Xia, A. D.; Li, X. B.; Tung, C. H.; Wu, L. Z. Rational design of dot-on-rod nano-heterostructure for photocatalytic CO2 reduction: Pivotal role of hole transfer and utilization. Adv. Mater. 2022, 34, 2106662.

[26]

Zhou, X. F.; Tian, Y. H.; Luo, J.; Jin, B.; Wu, Z. J.; Ning, X. M.; Zhan, L.; Fan, X. L.; Zhou, T.; Zhang, S. Q. et al. MoC quantum dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: From electrocatalysis to photocatalysis. Adv. Funct. Mater. 2022, 32, 2201518.

[27]

Chen, S.; Huang, D. L.; Xu, P.; Xue, W. J.; Lei, L.; Cheng, M.; Wang, R. Z.; Liu, X. G.; Deng, R. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion. J. Mater. Chem. A 2020, 8, 2286–2322.

[28]

Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.

[29]

Solakidou, M.; Giannakas, A.; Georgiou, Y.; Boukos, N.; Louloudi, M.; Deligiannakis, Y. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping. Appl. Catal. B: Environ. 2019, 254, 194–205.

[30]

Sun, P.; Xing, Z. P.; Li, Z. Z.; Zhou, W. Recent advances in quantum dots photocatalysts. Chem. Eng. J. 2023, 458, 141399.

[31]

Ye, M. Y.; Zhao, Z. H.; Hu, Z. F.; Liu, L. Q.; Ji, H. M.; Shen, Z. R.; Ma, T. Y. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Angew. Chem., Int. Ed. 2017, 56, 8407–8411.

[32]

Cui, C.; Li, S.; Qiu, Y. W.; Hu, H. H.; Li, X. Y.; Li, C. R.; Gao, J. K.; Tang, W. H. Fast assembly of Ag3PO4 nanoparticles within three-dimensional graphene aerogels for efficient photocatalytic oxygen evolution from water splitting under visible light. Appl. Catal. B: Environ. 2017, 200, 666–672.

[33]

Meng, Q.; Chen, Y. Z.; Zhu, W. K.; Zhang, L.; Yang, X. Y.; Duan, T. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors. Nanotechnology 2018, 29, 29LT01.

[34]

Zhou, L.; Li, Y. F.; Zhang, Y. K.; Qiu, L. W.; Xing, Y. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation. Acta Phys. Chim. Sin. 2022, 38, 2112027.

[35]

Sun, L.; Li, L. L.; Yang, J.; Fan, J. J.; Xu, Q. L. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chin. J. Catal. 2022, 43, 350–358.

[36]

He, Y.; Hu, P. Y.; Zhang, J. J.; Liang, G. J.; Yu, J. G.; Xu, F. Y. Boosting artificial photosynthesis: CO2 chemisorption and S-scheme charge separation via anchoring inorganic QDs on COFs. ACS Catal. 2024, 14, 1951–1961.

[37]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[38]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

[39]

Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/CdSe nanocrystal clusters for Plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.

[40]

Shi, X. F.; Xia, X. Y.; Cui, G. W.; Deng, N.; Zhao, Y. Q.; Zhuo, L. H.; Tang, B. Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. Appl. Catal. B: Environ. 2015, 163, 123–128.

[41]

Sheng, J. P.; He, Y.; Li, J. Y.; Yuan, C. W.; Huang, H. W.; Wang, S. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction. ACS Nano 2020, 14, 13103–13114.

[42]

Le, S. K.; Ma, Y. X.; He, D.; Wang, X. J.; Guo, Y. W. CdS/NH4V4O10 S-scheme photocatalyst for sustainable photo-decomposition of amoxicillin. Chem. Eng. J. 2021, 426, 130354.

[43]

Liang, R. W.; Yuan, H. Y.; Wang, S. H.; Chen, F.; Si, R. R.; Wu, L.; Yan, G. Y. Formation of CdS quantum dots on zeolitic imidazolate framework-67 dodecahedrons as S-scheme heterojunctions to enhance charge separation and antibacterial activity. Sep. Purif. Technol. 2022, 303, 122291.

[44]

Xu, X. Y.; Su, Y. H.; Dong, Y. P.; Luo, X.; Wang, S. H.; Zhou, W. Y.; Li, R.; Homewood, K. P.; Xia, X. H.; Gao, Y. et al. Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. J. Hazard. Mater. 2022, 424, 127685.

[45]

Chen, S.; Rong, Y. Y.; Tu, L. L.; Yu, Z. B.; Zhu, H. X.; Wang, S. F.; Hou, Y. P. Coupling the bioanode and S-scheme CuO/CdS quantum dots photocathode for chlortetracycline degradation: Performance, mechanism and microbial community. Process Saf. Environ. Prot. 2022, 166, 328–340.

[46]

Guo, Y. F.; Xin, C. H.; Dai, L. J.; Zhang, Y. P.; Yu, X.; Guo, Q. H. Layered and poriferous (Al, C)-Ta2O5 mesocrystals supported CdS quantum dots for high-efficiency photodegradation of organic contaminants. Sep. Purif. Technol. 2022, 284, 120297.

[47]

Basaleh, A.; Ismail, A. A.; Mohamed, R. M. Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr(VI) photoreduction. J. Alloys Compd. 2022, 927, 166988.

[48]

Li, X.; Xu, A.; Fan, H. G.; Liu, X. Y.; Wang, J.; Cao, J.; Yang, L. L.; Wei, M. B. 0D-2D S-scheme CdS/WO3 catalyst for efficiently boosting CO2 photoreduction. J. Power Sources 2022, 545, 231923.

[49]

Dong, Y. P.; Ji, P. Z.; Xu, X. Y.; Li, R.; Wang, Y.; Homewood, K. P.; Xia, X. H.; Gao, Y.; Chen, X. X. Rational design and construction of a CdS QDs/InVO4 atomic-layer (110)/(110) facet S-scheme heterojunction for highly efficient photocatalytic degradation of C2H4. Energy Environ. Mater. 2024, 7, e12643.

[50]

Cheng, C.; Zhang, J. J.; Zhu, B. C.; Liang, G. J.; Zhang, L. Y.; Yu, J. G. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew. Chem., Int. Ed. 2023, 62, e202218688.

[51]

Bai, Z. M.; Yan, X. Q.; Li, Y.; Kang, Z.; Cao, S. Y.; Zhang, Y. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv. Energy Mater. 2016, 6, 1501459.

[52]

Su, B.; Huang, L. J.; Xiong, Z.; Yang, Y. C.; Hou, Y. D.; Ding, Z. X.; Wang, S. B. Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. J. Mater. Chem. A 2019, 7, 26877–26883.

[53]

Fu, M. J.; Fan, G. Z.; Ding, D.; Liu, Y. Y.; Yan, J. T.; Wang, C. L.; Song, G. S.; Chai, B. Efficient interfacial charge transfer of 2D/2D CoP/CdS heterojunction for extremely boosted photocatalytic H2 evolution performance. Int. J. Hydrogen Energy 2022, 47, 34397–34409.

[54]

Ayyob, M.; Sun, Z. C.; Liu, Y. Y.; Wang, Y.; Wang, A. J. Performance of amine-modified CdS-D@ZIF-8 nanocomposites for enhanced photocatalytic H2 evolution. Int. J. Hydrogen Energy 2023, 48, 25645–25659.

[55]

Wang, Y. Y.; Wang, H. T.; Li, Y. K.; Zhang, M. W.; Zheng, Y. Designing a 0D/1D S-scheme heterojunction of cadmium selenide and polymeric carbon nitride for photocatalytic water splitting and carbon dioxide reduction. Molecules 2022, 27, 6286.

[56]

Liu, J.; Ma, M.; Yu, X.; Xin, C. H.; Li, M. X.; Li, S. J. Constructing Ag decorated ZnS1− x quantum dots/Ta2O5− x nanospheres for boosted tetracycline removal: Synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects. J. Colloid Interface Sci. 2022, 623, 1085–1100.

[57]

Zhang, J. J.; Gu, X. Y.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K. Z. Photocatalytic hydrogen production and tetracycline degradation using ZnIn2S4 quantum dots modified g-C3N4 composites. Nanomaterials 2023, 13, 305.

[58]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[59]

Dong, Z. L.; Zhang, Z. J.; Jiang, Y.; Chu, Y. Q.; Xu, J. Y. Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem. Eng. J. 2022, 433, 133762.

[60]

Li, D. B.; Zhou, J. X.; Zhang, Z. J.; Jiang, Y.; Dong, Z. L.; Xu, J. Y.; Yao, C. X. Enhanced photocatalytic activity for CO2 reduction over a CsPbBr3/CoAl-LDH composite: Insight into the S-scheme charge transfer mechanism. ACS Appl. Energy Mater. 2022, 5, 6238–6247.

[61]

Zhang, Z. J.; Li, L.; Jiang, Y.; Xu, J. Y. Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 2022, 61, 3351–3360.

[62]

Zhao, Y. Y.; Liang, X. H.; Hu, X. Y.; Fan, J. Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 S-scheme heterojunction photocatalyst. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 626, 127098.

[63]

Zhao, T. Y.; Li, D. Y.; Zhang, Y. Y.; Chen, G. Y. Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. J. Colloid Interface Sci. 2022, 628, 966–974.

[64]

Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. G. Interface-enhanced charge recombination in the heterojunction between perovskite nanocrystals and BiOI nanosheets serves as an S-scheme photocatalyst for CO2 reduction. J. Phys. Chem. Lett. 2022, 13, 7987–7993.

[65]

Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.

[66]

Li, N. Y.; Chen, X. J.; Wang, J.; Liang, X. M.; Ma, L. T.; Jing, X. L.; Chen, D. L.; Li, Z. Q. ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 2022, 16, 3332–3340.

[67]

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

[68]

Feng, Y. M.; Chen, D. M.; Zhong, Y.; He, Z. T.; Ma, S. Q.; Ding, H.; Ao, W. H.; Wu, X. F.; Niu, M. A lead-free 0D/2D Cs3Bi2Br9/Bi2WO6 S-scheme heterojunction for efficient photoreduction of CO2. ACS Appl. Mater. Interfaces 2023, 15, 9221–9230.

[69]

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

[70]

Yu, H. J.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

[71]

Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

[72]

Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.

[73]

Wang, J. J.; Tang, L.; Zeng, G. M.; Deng, Y. C.; Dong, H. R.; Liu, Y. N.; Wang, L. L.; Peng, B.; Zhang, C.; Chen, F. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl. Catal. B: Environ. 2018, 222, 115–123.

[74]

Liu, S. Y.; Li, X.; Meng, X.; Chen, T. X.; Kong, W. Y.; Li, Y.; Zhao, Y. X.; Wang, D. W.; Zhu, S. M.; Cheema, W. A. et al. Enhanced visible/near-infrared light harvesting and superior charge separation via 0D/2D all-carbon hybrid architecture for photocatalytic oxygen evolution. Carbon 2020, 167, 724–735.

[75]

Yang, M. Q.; Gao, M. M.; Hong, M. H.; Ho, G. W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894.

[76]

Tian, X. T.; Yin, X. B. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small 2019, 15, 1901803.

[77]

Han, M.; Zhu, S. J.; Lu, S. Y.; Song, Y. B.; Feng, T. L.; Tao, S. Y.; Liu, J. J.; Yang, B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 2018, 19, 201–218.

[78]

Kaur, M.; Kaur, M.; Sharma, V. K. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 2018, 259, 44–64.

[79]

Zhang, J.; Zhang, X. Y.; Dong, S. S.; Zhou, X.; Dong, S. S. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J. Photochem. Photobiol. A: Chem. 2016, 325, 104–110.

[80]

Huang, J.; Wang, J. W.; Hao, Z. J.; Li, C. S.; Wang, B. S.; Qu, Y. Fabrication of N-CQDs@W18O49 heterojunction with enhanced charge separation and photocatalytic performance under full-spectrum light irradiation. Chin. Chem. Lett. 2021, 32, 3180–3184.

[81]

Zhang, J. W.; Yu, F.; Ke, X.; Yu, H.; Guo, P. Y.; Du, L.; Zhang, M. L.; Luo, D. X. Carbon quantum dots bridged TiO2/CdIn2S4 toward photocatalytic upgrading of polycyclic aromatic hydrocarbons to benzaldehyde. Molecules 2022, 27, 7292.

[82]

Wang, T.; Nie, C. Y.; Ao, Z. M.; Wang, S. B.; An, T. C. Recent progress in G-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A 2020, 8, 485–502.

[83]

Kumar, P.; Thakur, U. K.; Alam, K.; Kar, P.; Kisslinger, R.; Zeng, S.; Patel, S.; Shankar, K. Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 2018, 137, 174–187.

[84]

Wang, Y.; Yu, H. T.; Wang, D. B.; Xing, M. M.; Zhang, Y. N.; Song, C. X. Low proton adsorption energy barrier of S-scheme p-CNQDs/VO-ZnO for thermodynamics and kinetics favorable hydrogen evolution. Chem. Eng. J. 2022, 437, 135321.

[85]

Bi, F.; Su, Y. T.; Zhang, Y. L.; Chen, M. L.; Darr, J. A.; Weng, X. L.; Wu, Z. B. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl. Catal. B: Environ. 2022, 306, 121109.

[86]

Bi, F.; Meng, Q. J.; Zhang, Y. L.; Weng, X. L.; Wu, Z. B. Defect engineering in 0D/2D S-scheme heterojunction photocatalysts for water activation: Synergistic roles of nickel doping and oxygen vacancy. ACS Appl. Mater. Interfaces 2023, 15, 31409–31420.

[87]

Xia, C. H.; Yuan, L.; Song, H.; Zhang, C. Q.; Li, Z. M.; Zou, Y. Y.; Li, J. X.; Bao, T.; Yu, C. Z.; Liu, C. Spatial specific Janus S-scheme photocatalyst with enhanced H2O2 production performance. Small 2023, 19, 2300292.

[88]

Saadati, A.; Habibi-Yangjeh, A.; Rahim Pouran, S.; Yekan Motlagh, P.; Khataee, A. Facile integration of brown TiO2− x with Bi4V2O11 and BiVO4: Double S-scheme mechanism for exceptional visible-light photocatalytic performance in degradation of pollutants. Adv. Powder Technol. 2023, 34, 103956.

[89]

Liang, R. W.; Wang, S. H.; Lu, Y.; Yan, G. Y.; He, Z. J.; Xia, Y. Z.; Liang, Z. Y.; Wu, L. Assembling ultrafine SnO2 nanoparticles on MIL-101(Cr) octahedrons for efficient fuel photocatalytic denitrification. Molecules 2021, 26, 7566.

[90]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[91]

Bahadoran, A.; Ramakrishna, S.; Masudy-Panah, S.; De Lile, J. R.; Gu, J. J.; Liu, Q. L.; Mishra, Y. K. Rational construction of a 0D/1D S-scheme CeO2/CdWO4 heterojunction for photocatalytic CO2 reduction and H2 production. Ind. Eng. Chem. Res. 2022, 61, 10931–10944.

[92]

Das, K. K.; Mansingh, S.; Mohanty, R.; Sahoo, D. P.; Priyadarshini, N.; Parida, K. 0D-2D Fe2O3/boron-doped g-C3N4 S-scheme exciton engineering for photocatalytic H2O2 production and photo-fenton recalcitrant-pollutant detoxification: Kinetics, influencing factors, and mechanism. J. Phys. Chem. C 2023, 127, 22–40.

[93]

Mohapatra, L.; Yoo, S. H. New reaction pathway induced by N-deficient conjugated polymer-supported bimetallic oxide quantum dot S-scheme heterojunction for benzyl alcohol oxidation in water. Mater. Today Energy 2023, 35, 101331.

[94]

Mostafa, M. M. M.; Shawky, A.; Fakhruz Zaman, S.; Narasimharao, K.; Abdel Salam, M.; Alshehri, A. A.; Khdary, N. H.; Al-Faifi, S.; Dutta Chowdhury, A. Enhanced and recyclable CO2 photoreduction into methanol over S-scheme PdO/GdFeO3 heterojunction photocatalyst under visible light. J. Mol. Liq. 2023, 377, 121528.

[95]

Tang, D. Y.; Xu, D. S.; Luo, Z. P.; Ke, J.; Zhou, Y.; Li, L. Z.; Sun, J. Highly dispersion Cu2O QDs decorated Bi2WO6 S-scheme heterojunction for enhanced photocatalytic water oxidation. Nanomaterials 2022, 12, 2455.

[96]

Qi, L.; Wang, M.; Xue, J. B.; Zhang, Q. Y.; Chen, F.; Liu, Q. Q.; Li, W. F.; Li, X. H. Simultaneous tuning band gaps of Cu2O and TiO2 to form S-scheme hetero-photocatalyst. Chem. Eur. J. 2021, 27, 14638–14644.

[97]

Zhang, X. D.; Kim, D.; Yan, J.; Lee, L. Y. S. Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl. Mater. Interfaces 2021, 13, 9762–9770.

[98]

Shi, L.; Yin, J. N.; Liu, Y. R.; Liu, H. Q.; Zhang, H.; Tang, H. Embedding Cu3P quantum dots onto BiOCl nanosheets as a 0D/2D S-scheme heterojunction for photocatalytic antibiotic degradation. Chemosphere 2022, 309, 136607.

[99]

Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z. et al. BiOBr with oxygen vacancies capture 0D black phosphorus quantum dots for high efficient photocatalytic ofloxacin degradation. Appl. Surf. Sci. 2022, 593, 153422.

[100]

Chen, L. J.; Wang, C. G.; Liu, G. Z.; Su, G. W.; Ye, K. R.; He, W. P.; Li, H. R.; Wei, H. Y.; Dang, L. P. Anchoring black phosphorous quantum dots on Bi2WO6 porous hollow spheres: A novel 0D/3D S-scheme photocatalyst for efficient degradation of amoxicillin under visible light. J. Hazard. Mater. 2023, 443, 130326.

[101]

Lu, Q. H.; You, H. S.; Fang, W. J.; Li, X. C.; Zeng, X. H.; Shangguan, W. F. Boosting photocatalytic H2 production performance over perovskite/CdS quantum dots S-scheme photocatalyst. J. Alloys Compd. 2023, 960, 171074.

[102]

Zhang, C. M.; Ma, J.; Zhu, H. B.; Ding, H. H.; Wu, H. H.; Zhang, K. H.; Zhao, X. L.; Wang, X. F.; Cheng, C. L. Self-assembled ZnIn2S4/SnS2 QDs S-scheme heterojunction for boosted photocatalytic hydrogen evolution: Energy band engineering and mechanism insight. J. Alloys Compd. 2023, 960, 170932.

[103]

Zhang, Y. Y.; Tian, Y.; Chen, W.; Zhou, M.; Ou, S. Y.; Liu, Y. L. Construction of a bismuthene/CsPbBr3 quantum dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2022, 126, 3087–3097.

[104]

Hu, P. Y.; Liang, G. J.; Zhu, B. C.; Macyk, W.; Yu, J. G.; Xu, F. Y. Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS Catal. 2023, 13, 12623–12633.

[105]

Zhong, Y.; Peng, C. D.; He, Z. T.; Chen, D. M.; Jia, H. L.; Zhang, J. Z.; Ding, H.; Wu, X. F. Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 2021, 11, 27–42.

[106]

Machín, A.; Fontánez, K.; Arango, J. C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F. I.; Morant, C.; Márquez, F. One-dimensional (1D) nanostructured materials for energy applications. Materials 2021, 14, 2609.

[107]

Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.

[108]

Peng, S. J.; Li, L. L.; Kong Yoong Lee, J.; Tian, L. L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361–395.

[109]

Yu, K. S.; Pan, X. L.; Zhang, G. B.; Liao, X. B.; Zhou, X. B.; Yan, M. Y.; Xu, L.; Mai, L. Nanowires in energy storage devices: Structures, synthesis, and applications. Adv. Energy Mater. 2018, 8, 1802369.

[110]

Zhang, Z. Z.; Liu, X. H.; Yuanling, L.; Yu, H.; Li, W. J.; Yu, H. B. Unveiling the role of Ag-Sb bimetallic S-scheme heterojunction for Vis-NIR-light driven selective photoreduction CO2 to CH4. Appl. Catal. B: Environ. 2022, 319, 121960.

[111]

Wang, Y.; Li, H.; Lin, Q. Y.; Zhao, J. W.; Fang, X.; Wen, N.; Zhang, Z. Z.; Ding, Z. X.; Yuan, R. S.; Huang, X. H. et al. Nanoscale 0D/1D heterojunction of MAPbBr3/COF toward efficient LED-driven S–S coupling reactions. ACS Catal. 2023, 13, 15493–15504.

[112]

Shang, Y. R.; Liu, T. X.; Chen, G.; Alborzi, E.; Yong, X.; Wang, Y. N,P Co-doped carbon quantum dots bridge g-C3N4 and SnO2: Accelerating charge transport in S-scheme heterojunction for enhanced photocatalytic hydrogen production. J. Alloys Compd. 2024, 971, 172667.

[113]

Wu, H. Z.; Hu, Z. Z.; Liang, R. H.; Nkwachukwu, O. V.; Arotiba, O. A.; Zhou, M. H. Novel Bi2Sn2O7 quantum Dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine. Appl. Catal. B: Environ. 2023, 321, 122053.

[114]

Liu, Y. H.; Zhang, C. Y.; Shi, A. Q.; Zuo, S. X.; Yao, C.; Ni, C. Y.; Li, X. Z. Full solar spectrum driven CO2 conversion over S-scheme natural mineral nanocomposite enhanced by LSPR effect. Powder Technol. 2022, 396, 615–625.

[115]

Li, H. Y.; Wang, G. R.; Gong, H. M.; Jin, Z. L. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution. J. Phys. Chem. C 2021, 125, 648–659.

[116]

Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 2010, 132, 14385–14387.

[117]

Wang, H.; Liu, X.; Niu, P.; Wang, S. L.; Shi, J.; Li, L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020, 2, 1377–1413.

[118]

Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.

[119]

Feng, C. Y.; Wu, Z. P.; Huang, K. W.; Ye, J. H.; Zhang, H. B Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.

[120]

Ying, Y. R.; Lin, Z. Z.; Huang, H. T. “Edge/basal plane half-reaction separation” mechanism of two-dimensional materials for photocatalytic water splitting. ACS Energy Lett. 2023, 8, 1416–1423.

[121]

Tan, P. F.; Ren, R. F.; Yang, L.; Zhang, M. Y.; Zhai, H. H.; Liu, H. L.; Chen, J. Y.; Pan, J. Direct S-scheme 0D/2D photocatalyst of CsPbBr3 quantum dots/BiVO4 nanosheets for efficient CO2 photoreduction. J. Mol. Liq. 2024, 393, 123644.

[122]

Gong, S. Q.; Teng, X.; Niu, Y. L.; Liu, X.; Xu, M. Z.; Xu, C.; Ji, L.; Chen, Z. F. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120521.

[123]

Li, J. Z.; Ma, Y.; Ye, Z. F.; Zhou, M. J.; Wang, H. Q.; Ma, C. C.; Wang, D. D.; Huo, P. W.; Yan, Y. S. Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl. Catal. B: Environ. 2017, 204, 224–238.

[124]

Yu, R.; Lin, Q. F.; Leung, S. F.; Fan, Z. Y. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 2012, 1, 57–72.

[125]

Yao, Y.; Yao, J.; Narasimhan, V. K.; Ruan, Z. C.; Xie, C.; Fan, S. H.; Cui, Y. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 2012, 3, 664.

[126]

Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.

[127]

Wang, Y. J.; Fan, H. G.; Liu, X. Y.; Cao, J.; Liu, H. L.; Li, X.; Yang, L. L.; Wei, M. B. 3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction. J. Alloys Compd. 2023, 945, 169197.

[128]

Bao, Y. J.; Song, S. Q.; Yao, G. J.; Jiang, S. J. S-scheme photocatalytic systems. Solar RRL 2021, 5, 2100118.

[129]

Hasija, V.; Kumar, A.; Sudhaik, A.; Raizada, P.; Singh, P.; Van Le, Q.; Le, T. T.; Nguyen, V. H. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: A review. Environ. Chem. Lett. 2021, 19, 2941–2966.

[130]

Lu, J. N.; Gu, S. N.; Li, H. D.; Wang, Y. N.; Guo, M.; Zhou, G. W. Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2023, 160, 214–239.

[131]

Wang, J.; Wang, Z. L.; Dai, K.; Zhang, J. F. Review on inorganic–organic S-scheme photocatalysts. J. Mater. Sci. Technol. 2023, 165, 187–218.

[132]

Mansingh, S.; Das, K. K.; Priyadarshini, N.; Sahoo, D. P.; Prusty, D.; Sahu, J.; Mohanty, U. A.; Parida, K. Minireview elaborating S-scheme charge dynamic photocatalysts: Journey from Z to S, mechanism of charge flow, characterization proof, and H2O2 evolution. Energy Fuels 2023, 37, 9873–9894.

[133]

Li, T.; Tsubaki, N.; Jin, Z. L. S-scheme heterojunction in photocatalytic hydrogen production. J. Mater. Sci. Technol. 2024, 169, 82–104.

[134]

Demming, A. Scanning probe microscopy: A visionary development. Nanotechnology 2013, 24, 290201–290201.

[135]

Xia, B. Q.; He, B. W.; Zhang, J. J.; Li, L. Q.; Zhang, Y. Z.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2201449.

[136]

Späth, T.; Popp, M.; Pérez León, C.; Marz, M.; Hoffmann-Vogel, R. Near-equilibrium measurement of quantum size effects using kelvin probe force microscopy. Nanoscale 2017, 9, 7868–7874.

[137]

Zhang, Z. Z.; Cao, Y. X.; Zhang, F. H.; Li, W. J.; Li, Y. L.; Yu, H.; Wang, M. Y.; Yu, H. B. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chem. Eng. J. 2022, 428, 131218.

[138]

Li, Y. H.; Yu, C. B.; Li, Z.; Jiang, P.; Zhou, X. Y.; Gao, C. F.; Li, J. Y. Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes. Rare Met. 2020, 39, 1356–1363.

[139]

Xia, L. H.; Zhang, K. S.; Wang, X. D.; Guo, Q.; Wu, Y. N.; Du, Y. J.; Zhang, L. X.; Xia, J. F.; Tang, H.; Zhang, X. et al. 0D/2D schottky junction synergies with 2D/2D S-scheme heterojunction strategy to achieve uniform separation of carriers in 0D/2D/2D quasi CNQDs/TCN/ZnIn2S4 towards photocatalytic remediating petroleum hydrocarbons polluted marine. Appl. Catal. B: Environ. 2023, 325, 122387.

[140]

Li, C.; Requist, R.; Gross, E. K. U. Energy, momentum, and angular momentum transfer between electrons and nuclei. Phys. Rev. Lett. 2022, 128, 113001.

[141]

Hrour, E.; El Idrissi, M.; Taj, S.; Manaut, B. Coulomb and anomalous magnetic moment effects on laser-assisted electron scattering by atomic nucleus. Indian J. Phys. 2022, 96, 1509–1520.

[142]

Bauzá, A.; Frontera, A. Halogen and chalcogen bond energies evaluated using electron density properties. ChemPhysChem 2020, 21, 26–31.

[143]

Zhang, J. J.; Zhang, L. Y.; Wang, W.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J. Phys. Chem. Lett. 2022, 13, 8462–8469.

[144]

Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for congo red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

[145]

Wang, J. L.; Mao, Y. F.; Zhang, R. Z.; Zeng, Y. L.; Li, C. S.; Zhang, B. J.; Zhu, J. H.; Ji, J. W.; Liu, D. S.; Gao, R. M. et al. In situ assembly of hydrogen-bonded organic framework on metal-organic framework: An effective strategy for constructing core-shell hybrid photocatalyst. Adv. Sci. 2022, 9, 2204036.

[146]

Jia, X. M.; Hu, C.; Sun, H. Y.; Cao, J.; Lin, H. L.; Li, X. Y.; Chen, S. F. A dual defect Co-modified S-scheme heterojunction for boosting photocatalytic CO2 reduction coupled with tetracycline oxidation. Appl. Catal. B: Environ. 2023, 324, 122232.

[147]

Yang, Y. L.; Zhang, D. N.; Fan, J. J.; Liao, Y. L.; Xiang, Q. J. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2T x MXene for photocatalytic CO2 reduction. Solar RRL 2021, 5, 2000351.

[148]

He, B. W.; Wang, Z. L.; Xiao, P.; Chen, T.; Yu, J. G.; Zhang, L. Y. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv. Mater. 2022, 34, 2203225.

[149]

Zhu, Z.; Lv, Q. L.; Ni, Y. X.; Gao, S. N.; Geng, J. R.; Liang, J.; Li, F. J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery. Angew. Chem., Int. Ed. 2022, 61, e202116699.

[150]

Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O Splitting into H2 with S-scheme principle. Chin. J. Catal. 2020, 41, 122–130.

[151]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[152]

Dozzi, M. V.; D’Andrea, C.; Ohtani, B.; Valentini, G.; Selli, E. Fluorine-doped TiO2 materials: Photocatalytic activity vs. time-resolved photoluminescence. J. Phys. Chem. C 2013, 117, 25586–25595.

[153]

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.

[154]

Zhu, L. Y.; Li, H.; Xia, P. F.; Liu, Z. R.; Xiong, D. H. Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 39679–39687.

[155]

Zhang, Y. Y.; Guo, L.; Wang, Y. X.; Wang, T. Y.; Ma, T. X.; Zhang, Z. Z.; Wang, D. J.; Xu, B.; Fu, F. In- situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions. J. Mater. Sci. Technol. 2022, 110, 152–160.

[156]

Li, L. L.; Ma, D. K.; Xu, Q. L.; Huang, S. M. Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chem. Eng. J. 2022, 437, 135153.

[157]

Jin, Z. L.; Wu, Y. L. Novel preparation strategy of graphdiyne (C n H2 n -2): One-pot conjugation and S-scheme heterojunctions formed with MoP characterized with in situ XPS for efficiently photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2023, 327, 122461.

[158]

Ren, H. T.; Qi, F.; Labidi, A.; Zhao, J. J.; Wang, H.; Xin, Y.; Luo, J. M.; Wang, C. Y. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Appl. Catal. B: Environ. 2023, 330, 122587.

[159]

Lai, C.; Xu, M. Y.; Xu, F. H.; Li, B. S.; Ma, D. S.; Li, Y. X.; Li, L.; Zhang, M. M.; Huang, D. L.; Tang, L. et al. An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air. Chem. Eng. J. 2023, 452, 139070.

[160]

Zhou, B.; Xu, X.; Li, M. J.; Wu, L. Q.; Xu, S.; Yuan, L. G.; Chong, Y. N.; Xie, W. G.; Liu, P. Y.; Ye, D. Q. et al. Synergistic effects of heterointerface and surface Br vacancies in ultrathin 2D/2D H2WO4/Cs2AgBiBr6 for efficient CO2 photoreduction to CH4. Chem. Eng. J. 2023, 468, 143754.

[161]

Luan, X.; Yu, Z. Q.; Zi, J. Z.; Gao, F. F.; Lian, Z. C. Photogenerated defect-transit dual S-scheme charge separation for highly efficient hydrogen production. Adv. Funct. Mater. 2023, 33, 2304259.

[162]

Wang, H. Z.; Guo, W. Q.; Liu, B. H.; Wu, Q. L.; Luo, H. C.; Zhao, Q.; Si, Q. S.; Sseguya, F.; Ren, N. Q. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Res. 2019, 160, 405–414.

[163]

Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J. Mater. Sci. Technol. 2020, 56, 216–226.

[164]

Ren, X. T.; Guo, M. S.; Xue, L. L.; Xu, L. K.; Li, L.; Yang, L. H.; Wang, M.; Xin, Y. L.; Ding, F. Y.; Wang, Y. D. Photoelectrochemical performance and S-scheme mechanism of ternary GO/g-C3N4/TiO2 heterojunction photocatalyst for photocatalytic antibiosis and dye degradation under visible light. Appl. Surf. Sci. 2023, 630, 157446.

[165]

Verma, A.; Dhanaraman, E.; Chen, W. T.; Fu, Y. P. Optimization of intercalated 2D BiOCl sheets into Bi2WO6 flowers for photocatalytic NH3 production and antibiotic pollutant degradation. ACS Appl. Mater. Interfaces 2023, 15, 37540–37553.

[166]

Li, X.; Guan, J. R.; Jiang, H. P.; Song, X. H.; Huo, P. W.; Wang, H. Q. rGO modified R-CeO2/g-C3N4 multi-interface contact S-scheme photocatalyst for efficient CO2 photoreduction. Appl. Surf. Sci. 2021, 563, 150042.

[167]

Gao, P.; Huang, S. J.; Tao, K.; Li, Z. X.; Feng, L.; Liu, Y. Z.; Zhang, L. Q. Synthesis of Adjustable {312}/{004} facet heterojunction MWCNTs/Bi5O7I photocatalyst for ofloxacin degradation: Novel insights into the charge carriers transport. J. Hazard. Mater. 2022, 437, 129374.

[168]

Liu, H. X.; Pan, L. K.; Nie, J. L.; Mei, H.; Zhu, G. Q.; Jin, Z. P.; Cheng, L. F.; Zhang, L. T. Bi12TiO20-TiO2 S-scheme heterojunction for improved photocatalytic NO removal: Experimental and DFT insights. Sep. Purif. Technol. 2023, 314, 123575.

[169]

Pan, L. K.; Yao, L.; Mei, H.; Liu, H. X.; Jin, Z. P.; Zhou, S. X.; Zhang, M. G.; Zhu, G. Q.; Cheng, L. F.; Zhang, L. T. Structurally designable Bi2S3/P-doped ZnO S-scheme photothermal metamaterial enhanced CO2 reduction. Sep. Purif. Technol. 2023, 312, 123365.

[170]

Li, X. F.; Zhang, J. F.; Wang, Z. L.; Fu, J. W.; Li, S. M.; Dai, K.; Liu, M. Interfacial C–S bonds of g-C3N4/Bi19Br3S27 S-scheme heterojunction for enhanced photocatalytic CO2 reduction. Chem. -Eur. J. 2023, 29, e202202669.

[171]

Bursch, M.; Mewes, J. M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem., Int. Ed. 2022, 61, e202205735.

[172]

Dong, Z. L.; Shi, Y.; Jiang, Y.; Yao, C. X.; Zhang, Z. J. In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst. J. CO2 Util. 2023, 72, 102480.

[173]

Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357.

[174]

Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations. Chem. Mater. 2011, 23, 3495–3508.

[175]

Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601.

[176]

Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300.

[177]

Wang, Y. H.; Yu, W. Y.; Wang, C. Y.; Chen, F.; Ma, T. Y.; Huang, H. W. Defects in photoreduction reactions: Fundamentals, classification, and catalytic energy conversion. eScience 2024, 4, 100228.

[178]

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

[179]

Saleh, N. B.; Milliron, D. J.; Aich, N.; Katz, L. E.; Liljestrand, H. M.; Kirisits, M. J. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species. Sci. Total Environ. 2016, 568, 926–932.

[180]

Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 2006, 128, 15666–15671.

[181]

McCluskey, M. D.; Janotti, A. Defects in semiconductors. J. Appl. Phys. 2020, 127, 190401.

[182]

Lei, B.; Cui, W.; Chen, P.; Chen, L.; Li, J. Y.; Dong, F. C-doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction. ACS Catal. 2022, 12, 9670–9678.

[183]

Li, C. Q.; Yi, S. S.; Liu, Y.; Niu, Z. L.; Yue, X. Z.; Liu, Z. Y. In-situ constructing S-scheme/schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution. Chem. Eng. J. 2021, 417, 129231.

[184]

Zhao, Z. W.; Wang, Z. L.; Zhang, J. F.; Shao, C. F.; Dai, K.; Fan, K.; Liang, C. H. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv. Funct. Mater. 2023, 33, 2214470.

[185]

Ye, C.; Zhang, D. S.; Chen, B.; Tung, C. H.; Wu, L. Z. Interfacial charge transfer regulates photoredox catalysis. ACS Cent. Sci. 2024, 10, 529–542.

[186]

He, B. W.; Xiao, P.; Wan, S. J.; Zhang, J. J.; Chen, T.; Zhang, L. Y.; Yu, J. G. Rapid charge transfer endowed by interfacial Ni–O bonding in S-scheme heterojunction for efficient photocatalytic H2 and imine production. Angew. Chem., Int. Ed. 2023, 62, e202313172.

[187]

Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

[188]

Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

[189]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[190]

Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

[191]

Zhang, Z. J.; Wang, X. S.; Li, D. B.; Chu, Y. Q.; Xu, J. Y. Regulating oxygen vacancies and Fermi level of mesoporous CeO2- x for intensified built-in electric field and boosted charge separation of Cs3Bi2Br9/CeO2− x S-scheme heterojunction. Small 2024, 20, 2305566.

[192]

Chen, Z. J.; Guo, H.; Liu, H. Y.; Niu, C. G.; Huang, D. W.; Yang, Y. Y.; Liang, C.; Li, L.; Li, J. C. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline. Chem. Eng. J. 2022, 438, 135471.

[193]

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene Co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

[194]

Wang, H.; Sun, Y. M.; Wu, Y.; Tu, W. G.; Wu, S. Y.; Yuan, X. Z.; Zeng, G. M.; Xu, Z. J.; Li, S. Z.; Chew, J. W. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O,OH) x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl. Catal. B: Environ. 2019, 245, 290–301.

[195]

Wang, S.; Du, X.; Yao, C. H.; Cai, Y. F.; Ma, H. Y.; Jiang, B. J.; Ma, J. S-scheme heterojunction/schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Res. 2023, 16, 2152–2162.

[196]

Sun, H. B.; Qin, P. F.; Guo, J. Y.; Jiang, Y.; Liang, Y. S.; Gong, X. M.; Ma, X.; Wu, Q.; Zhang, J. C.; Luo, L. et al. Enhanced electron channel via the interfacial heterotropic electric field in dual S-scheme g-C3N4/WO3/ZnS photocatalyst for year-round antibiotic degradation under sunlight. Chem. Eng. J. 2023, 470, 144217.

[197]

Lin, K.; Zhu, Z. J.; Ge, W. Y.; Jiang, T. X.; Huang, H. W. Atomic-level unveiling secondary recrystallization enabled micro- and macroscopic polarization enhancement for piezo-photocatalytic oxygen activation. Nano Res. 2024, 17, 5040–5049.

[198]

Hu, C.; Huang, H. W. Advances in piezoelectric polarization enhanced photocatalytic energy conversion. Acta Phys. Chim. Sin. 2023, 39, 2212048.

[199]

Feng, W. H.; Yuan, J.; Gao, F.; Weng, B.; Hu, W. T.; Lei, Y. H.; Huang, X. Y.; Yang, L.; Shen, J.; Xu, D. F. et al. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 2020, 75, 104990.

[200]

Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3− x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96.

[201]

He, H. W.; Wang, Z. L.; Dai, K.; Li, S. W.; Zhang, J. F. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction. Chin. J. Catal. 2023, 48, 267–278.

Nano Research
Cite this article:
Ru J-T, Tung C-H, Wu L-Z. S-scheme quantum dots heterojunction photocatalysts: Assembly types, mechanism insights, and design strategies. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6904-2
Topics:

230

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 June 2024
Revised: 21 July 2024
Accepted: 22 July 2024
Published: 05 September 2024
© Tsinghua University Press 2024
Return