AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

All-quantum-dot information system

Junpeng ChenChensheng Dai§Yuxuan Zheng§Ding ZhaoJie Bao( )
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

§ Chensheng Dai and Yuxuan Zheng contributed equally to this work.

Show Author Information

Graphical Abstract

We prove that quantum dots have the ability to serve as core components with high-density characteristics in various modules of information systems due to their broad tunability and wavelength flexibility. We provide comprehensive methods and paradigms for designing quantum dot information systems and build a prototype of an all-quantum-dot information system.

Abstract

In 2023, the Nobel Prize in Chemistry was awarded to Bawendi, Brus, and Ekimov, three scientists who have made great contributions to the discovery and synthesis of quantum dots (QDs), heralding a new era for these nanomaterials. The inception of QDs dates back more than 40 years, during which the theory of QDs has been continuously refined, the manufacturing techniques have significantly flourished, and the applications have largely expanded. Recently, QDs have become important optical devices, playing key roles in numerous fields such as display, energy, and biomedical applications. To celebrate the outstanding achievements of QDs over the years, we dedicate this paper to QDs. In the information field, QDs have been extensively utilized to design devices related to domains like transmission and storage, achieving many breakthroughs in performance. This paper proposes a comprehensive set of methodologies and paradigms for designing information systems using QDs. The proposed approach embodies two characteristics of QDs: 1) QDs play a central role in every aspect of the system and possess the capability to construct an all-quantum-dot (All-QD) information system. 2) QDs possess tunability and wavelength flexibility, which can significantly enhance the information density. Finally, we construct a prototype model of an All-QD information system and validate its feasibility through simulation. We believe that with the continued development of quantum dot (QD) technology, the realization of an All-QD information system is on the horizon.

References

[1]

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 2023, 118, S15–S17.

[2]

Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 1982, 86, 4470–4472.

[3]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[4]

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[5]

Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

[6]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[7]

Nozik, A. J. Quantum dot solar cells. Phys. E: Low Dimens. Syst. Nanostruct. 2002, 14, 115–120.

[8]

Geszke-Moritz, M.; Moritz, M. Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Mater. Sci. Eng. C 2013, 33, 1008–1021.

[9]

Spirit, D. M.; Ellis, A. D.; Barnsley, P. E. Optical time division multiplexing: Systems and networks. IEEE Commun. Mag. 1994, 32, 56–62.

[10]

Richardson, D. J.; Fini, J. M.; Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362.

[11]

Brackett, C. A. Dense wavelength division multiplexing networks: Principles and applications. IEEE J. Select. Areas Commun. 1990, 8, 948–964.

[12]

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

[13]

Zheng, X. Q.; Zhang, C.; Lv, F. X.; Zhao, F.; Yuan, S.; Yue, S. G.; Wang, Z. Q.; Li, F. L.; Wang, Z. H.; Jiang, H. J. A 40-Gb/s quarter-rate SerDes transmitter and receiver chipset in 65-nm CMOS. IEEE J. Solid-State Circuits 2017, 52, 2963–2978.

[14]

Lee, J.; Chiang, P. C.; Peng, P. J.; Chen, L. Y.; Weng, C. C. Design of 56 Gb/s NRZ and PAM4 SerDes transceivers in CMOS technologies. IEEE J. Solid-State Circuits 2015, 50, 2061–2073.

[15]
Segal, Y.; Laufer, A.; Khairi, A.; Krupnik, Y.; Cusmai, M.; Levin, I.; Gordon, A.; Sabag, Y.; Rahinski, V.; Ori, G. et al. A 1.41 pJ/b 224Gb/s PAM-4 SerDes receiver with 31dB loss compensation. In Proceedings of 2022 IEEE International Solid-State Circuits Conference, San Francisco, 2022, pp 114–116.
[16]
Ramaswamy, N.; Calderoni, A.; Zahurak, J.; Servalli, G.; Chavan, A.; Chhajed, S.; Balakrishnan, M.; Fischer, M.; Hollander, M.; Ettisserry, D. P. et al. NVDRAM: A 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads. In Proceedings of 2023 International Electron Devices Meeting, San Francisco, 2023, pp 1–4.
[17]
Buhrow, B. R.; Goetzinger, W. J.; Gilbert, B. K. 1 Tb/s anti-replay protection with 20-port on-chip RAM memory in FPGAs. In Proceedings of 2016 International Conference on ReConFigurable Computing and FPGAs, Cancun, 2016, pp 1–8.
[18]
Brayton, R. K.; Hachtel, G. D.; McMullen, C. T.; Sangiovanni-Vincentelli, A. L. Logic Minimization Algorithms for VLSI Synthesis; Springer: New York, 1984.
[19]

Alyahya, T. N.; El Bachir Menai, M.; Mathkour, H. On the structure of the Boolean satisfiability problem: A survey. ACM Comput. Surv. 2023, 55, 46.

[20]

Song, Y. T.; Wang, B. S. Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 2013, 28, 591–604.

[21]

Lundstrom, M. Moore’s law forever. Science 2003, 299, 210–211.

[22]
Donati, S. Photodetectors: Devices, Circuits and Applications; John Wiley & Sons: Hoboken, 2021.
[23]

El-Hageen, H. M.; Alatwi, A. M.; Zaki Rashed, A. N. High-speed signal processing and wide band optical semiconductor amplifier in the optical communication systems. J. Opt. Commun. 2024, 44, 1277–1284.

[24]

Jahid, A.; Alsharif, M. H.; Hall, T. J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311.

[25]

Mukherjee, B. WDM optical communication networks: Progress and challenges. IEEE J. Select. Areas Commun. 2000, 18, 1810–1824.

[26]

Puttnam, B. J.; Rademacher, G.; Luís, R. S. Space-division multiplexing for optical fiber communications. Optica 2021, 8, 1186–1203.

[27]
Kim, I. I.; Korevaar, E. J. Availability of free-space optics (FSO) and hybrid FSO/RF systems. In Proceedings of SPIE 4530, Optical Wireless Communications IV, Denver, 2001, pp 84–95.
[28]

Zhao, M.; Wen, J.; Hu, Q.; Wei, X. B.; Zhong, Y. W.; Ruan, H.; Gu, M. A 3D nanoscale optical disk memory with petabit capacity. Nature 2024, 626, 772–778.

[29]

Ozaktas, H. M.; Kutay, M. A. Optical information processing: A historical overview. Digit. Signal Process. 2021, 119, 103248.

[30]

Wetzstein, G.; Ozcan, A.; Gigan, S.; Fan, S. H.; Englund, D.; Soljačić, M.; Denz, C.; Miller, D. A.; Psaltis, D. Inference in artificial intelligence with deep optics and photonics. Nature 2020, 588, 39–47.

[31]

El-Nahal, F.; Hanik, N. Technologies for future wavelength division multiplexing passive optical networks. IET Optoelectron. 2020, 14, 53–57.

[32]
Gottlieb, M. S. Acousto-optic tunable filters. In Design and Fabrication of Acousto-optic Devices. Goutzoulis, A. P., Ed.; CRC Press: Boca Raton, 2021; pp 197–283.
[33]
Bogdan, O. V.; Pavlenko, V. K.; Pashkevich, G. A.; Shkadarevich, A. P. Acousto-optical analyzers of microwave broadband spectrum. In Proceedings of the 23rd International Crimean Conference “Microwave & Telecommunication Technology”, Sevastopol, 2013, pp 940–941.
[34]

Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X. Z.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019, 183, 108137.

[35]

Zetie, K. P.; Adams, S. F.; Tocknell, R. M. How does a Mach-Zehnder interferometer work. Phys. Educ. 2000, 35, 46–48.

[36]
Lee, J. N. Optical information processing. In Handbook of Optoelectronics; 2nd ed. Dakin, J. P.; Brown, R. G. W., Eds.; CRC Press: Boca Raton, 2017; pp 541–567.
[37]

Shen, Y. C.; Harris, N. C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S. J.; Larochelle, H.; Englund, D. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446.

[38]

Tait, A. N.; de Lima, T. F.; Nahmias, M. A.; Miller, H. B.; Peng, H. T.; Shastri, B. J.; Prucnal, P. R. Silicon photonic modulator neuron. Phys. Rev. Appl. 2019, 11, 064043.

[39]

Chiles, J.; Buckley, S. M.; Nam, S. W.; Mirin, R. P.; Shainline, J. M. Design, fabrication, and metrology of 10× 100 multi-planar integrated photonic routing manifolds for neural networks. APL Photonics 2018, 3, 106101.

[40]

Rahmani, B.; Loterie, D.; Konstantinou, G.; Psaltis, D.; Moser, C. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl. 2018, 7, 69.

[41]

Teğin, U.; Yıldırım, M.; Oğuz, İ.; Moser, C.; Psaltis, D. Scalable optical learning operator. Nat. Comput. Sci. 2021, 1, 542–549.

[42]

Lin, X.; Rivenson, Y.; Yardimci, N. T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008.

[43]

Li, J. X.; Mengu, D.; Yardimci, N. T.; Luo, Y.; Li, X. R.; Veli, M.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 2021, 7, eabd7690.

[44]

Bao, J.; Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70.

[45]

Liu, S. Y.; Liu, X. H.; Zhu, X. Y.; Yin, J. H.; Bao, J. Multiple-channel information encryption based on quantum dot absorption spectra. ACS Nano 2023, 17, 21349–21359.

[46]

Dohnalová, K.; Poddubny, A. N.; Prokofiev, A. A.; de Boer, W. D.; Umesh, C. P.; Paulusse, J. M.; Zuilhof, H.; Gregorkiewicz, T. Surface brightens up Si quantum dots: Direct bandgap-like size-tunable emission. Light Sci. Appl. 2013, 2, e47.

[47]

Arnspang Christensen, E.; Kulatunga, P.; Lagerholm, B. C. A single molecule investigation of the photostability of quantum dots. PLoS One. 2012, 7, e44355.

[48]

Zwerver, A. M. J.; Krähenmann, T.; Watson, T. F.; Lampert, L.; George, H. C.; Pillarisetty, R.; Bojarski, S. A.; Amin, P.; Amitonov, S. V.; Boter, J. M. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 2022, 5, 184–190.

[49]

Jang, M.; Horie, Y.; Shibukawa, A.; Brake, J.; Liu, Y.; Kamali, S. M.; Arbabi, A.; Ruan, H. W.; Faraon, A.; Yang, C. H. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 2018, 12, 84–90.

[50]

Liu, Z. C.; Zhu, D. Y.; Rodrigues, S. P.; Lee, K. T.; Cai, W. S. Generative model for the inverse design of metasurfaces. Nano Lett. 2018, 18, 6570–6576.

[51]

Yoon, G.; Tanaka, T.; Zentgraf, T.; Rho, J. Recent progress on metasurfaces: Applications and fabrication. J. Phys. D: Appl. Phys. 2021, 54, 383002.

[52]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[53]

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

[54]

Li, Y. N.; Zhou, X.; Yang, Q.; Li, Y. D.; Li, W. B.; Li, H. Z.; Chen, S. R.; Li, M. Z.; Song, Y. L. Patterned photonic crystals for hiding information. J. Mater. Chem. C 2017, 5, 4621–4628.

[55]

Zhang, S.; Bi, C.; Tan, Y. M.; Luo, Y. M.; Liu, Y. F.; Cao, J.; Chen, M. L.; Hao, Q.; Tang, X. Direct optical lithography enabled multispectral colloidal quantum-dot imagers from ultraviolet to short-wave infrared. ACS Nano 2022, 16, 18822–18829.

[56]

Norris, D. J. Multispectral quantum-dot photodetectors. Nat. Photonics 2019, 13, 230–232.

[57]

Kaniewski, J.; Piotrowski, J. InGaAs for infrared photodetectors. Physics and technology. Opto-Electron. Rev. 2004, 12, 139–148.

[58]

Zhang, S.; Chen, M. L.; Mu, G.; Li, J. M.; Hao, Q.; Tang, X. Spray-stencil lithography enabled large-scale fabrication of multispectral colloidal quantum-dot infrared detectors. Adv. Mater. Technol. 2022, 7, 2101132.

[59]
Tang, X.; Hao, Q. Towards dual-band shot-wave and mid-wave infrared focal plane array by using colloidal quantum dots. In Proceedings of SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 2021, pp 168–174.
[60]

Gréboval, C.; Darson, D.; Parahyba, V.; Alchaar, R.; Abadie, C.; Noguier, V.; Ferré, S.; Izquierdo, E.; Khalili, A.; Prado, Y. et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. Nanoscale 2022, 14, 9359–9368.

[61]

Pejović, V.; Lee, J.; Georgitzikis, E.; Li, Y. L.; Kim, J. H.; Lieberman, I.; Malinowski, P. E.; Heremans, P.; Cheyns, D. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging. IEEE Electron Device Lett. 2021, 42, 1196–1199.

[62]

Zhang, S.; Bi, C.; Qin, T. L.; Liu, Y. F.; Cao, J.; Song, J. Q.; Huo, Y. J.; Chen, M. L.; Hao, Q.; Tang, X. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots. ACS Photonics 2023, 10, 673–682.

[63]

Huang, C. H.; Tanaka, T.; Kagami, S.; Ninomiya, Y.; Kakuda, M.; Watanabe, K.; Inoue, S.; Nanba, K.; Igarashi, Y.; Yamamoto, T. et al. Multispectral imaging of mineral samples by infrared quantum dot focal plane array sensors. Measurement 2020, 159, 107775.

[64]

Luo, Y. N.; Tan, Y. M.; Bi, C.; Zhang, S.; Xue, X. M.; Chen, M. L.; Hao, Q.; Liu, Y. F.; Tang, X. Megapixel large-format colloidal quantum-dot infrared imagers with resonant-cavity enhanced photoresponse. APL Photonics 2023, 8, 056109.

[65]

Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371.

[66]
Steckel, J. S.; Josse, E.; Pattantyus-Abraham, A. G.; Bidaud, M.; Mortini, B.; Bilgen, H.; Arnaud, O.; Allegret-Maret, S.; Saguin, F.; Mazet, L. et al. 1.62 μm global shutter quantum dot image sensor optimized for near and shortwave infrared. In Proceedings of 2021 IEEE International Electron Devices Meeting, San Francisco, 2021, pp 23.4.1–23.4.4.
[67]

Peterson, J. C.; Guyot-Sionnest, P. Room-temperature 15% efficient mid-infrared HgTe colloidal quantum dot photodiodes. ACS Appl. Mater. Interfaces 2023, 15, 19163–19169.

[68]
Jiang, L.; Sun, H. J.; Xu, B. L.; Zhang, D. W.; Tao, C. X.; Huang, Y. S.; Ni, Z. J.; Zhuang, S. L. The spectrum of quantum dots film for UV CCD. J. Spectrosc., in press, DOI: 10.1155/2013/803907.
[69]

Zhu, X. X.; Bian, L. H.; Fu, H.; Wang, L. X.; Zou, B. S.; Dai, Q. H.; Zhang, J.; Zhong, H. Z. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 2020, 9, 73.

[70]

Mouroulis, P.; Green, R. O.; Chrien, T. G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 2000, 39, 2210–2220.

[71]

Gao, L.; Kester, R. T.; Hagen, N.; Tkaczyk, T. S. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. Opt. Express 2010, 18, 14330–14344.

[72]

Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.

[73]

Schmeckebier, H.; Meuer, C.; Bimberg, D.; Schmidt-Langhorst, C.; Galperin, A.; Schubert, C. Quantum dot semiconductor optical amplifiers at 1.3 μm for applications in all-optical communication networks. Semicond. Sci. Technol. 2011, 26, 014009.

[74]
Schmeckebier, H.; Lingnau, B.; Koenig, S.; Lüdge, K.; Meuer, C.; Zeghuzi, A.; Arsenijević; D.; Stubenrauch, M.; Bonk, R.; Koos, C. et al. Ultra-broadband bidirectional dual-band quantum-dot semiconductor optical amplifier. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, 2015, pp 3–7.
[75]

Wei, Z. X.; Zhang, L.; Wang, L.; Chen, C. J.; Pepe, A.; Liu, X.; Chen, K. C.; Wu, M. C.; Dong, Y. H.; Wang, L. et al. 2 Gbps/3 m air-underwater optical wireless communication based on a single-layer quantum dot blue micro-LED. Opt. Lett. 2020, 45, 2616–2619.

[76]

Li, X.; Tong, Z. J.; Lyu, W. C.; Chen, X.; Yang, X. Q.; Zhang, Y. F.; Liu, S. J.; Dai, Y. Z.; Zhang, Z. J.; Guo, C. Y. et al. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Opt. Express 2022, 30, 1709–1722.

[77]
Lu, Z. G.; Zeb, K.; Liu, J. R.; Liu, E.; Mao, L. D.; Poole, P. J.; Rahim, M.; Pakulski, G.; Barrios, P.; Jiang, W. H. et al. Quantum dot semiconductor lasers for 5G and beyond wireless networks. In Proceedings of SPIE 11690, Smart Photonic and Optoelectronic Integrated Circuits XXIII, California, 2021, pp 68–75.
[78]

Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Meuer, C.; Schubert, C.; Bunge, C. A.; Bimberg, D. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers. Appl. Phys. Lett. 2015, 106, 213501.

[79]

Umair, M. A.; Seminara, M.; Meucci, M.; Fattori, M.; Bruni, F.; Brovelli, S.; Meinardi, F.; Catani, J. Long-range optical wireless communication system based on a large-area, q-dots fluorescent antenna. Laser Photonics Rev. 2023, 17, 2200575.

[80]

Konstantatos, G.; Sargent, E. H. Colloidal quantum dot photodetectors. Infrared Phys. Technol. 2011, 54, 278–282.

[81]

Umezawa, T.; Akahane, K.; Yamamoto, N.; Kanno, A.; Kawanishi, T. Highly sensitive photodetector using ultra-high-density 1.5-μm quantum dots for advanced optical fiber communications. IEEE J. Select. Top. Quantum Electron. 2014, 20, 147–153.

[82]

Schimpf, C.; Reindl, M.; Huber, D.; Lehner, B.; Covre Da Silva, S. F.; Manna, S.; Vyvlecka, M.; Walther, P.; Rastelli, A. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 2021, 7, eabe8905.

[83]

Collins, R. J.; Clarke, P. J.; Fernández, V.; Gordon, K. J.; Makhonin, M. N.; Timpson, J. A.; Tahraoui, A.; Hopkinson, M.; Fox, A. M.; Skolnick, M. S. et al. Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source. J. Appl. Phys. 2010, 107, 073102.

[84]

Bedington, R.; Arrazola, J. M.; Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 2017, 3, 30.

[85]

Olbrich, F.; Höschele, J.; Müller, M.; Kettler, J.; Luca Portalupi, S.; Paul, M.; Jetter, M.; Michler, P. Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Appl. Phys. Lett. 2017, 111, 133106.

[86]
Peters, R. Fluorescence photobleaching techniques. In Fluorescence Microscopy: From Principles to Biological Applications; Kubitscheck, U., Ed.; Wiley-VCH: Weinheim, 2017; pp 339–363.
[87]

Kimura, J.; Maenosono, S.; Yamaguchi, Y. Near-field optical recording on a CdSe nanocrystal thin film. Nanotechnology 2003, 14, 69–72.

[88]

Zhao, J. W.; Zheng, Y. Y.; Pang, Y. Y.; Chen, J.; Zhang, Z. Y.; Xi, F. N.; Chen, P. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. J. Colloid Interface Sci. 2020, 579, 307–314.

[89]

Gogoi, K.; Chattopadhyay, A. Surface engineering of quantum dots for self-powered ultraviolet photodetection and information encryption. Langmuir 2022, 38, 2668–2676.

[90]

Li, X. P.; Bullen, C.; Chon, J. W. M.; Evans, R. A.; Gu, M. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Appl. Phys. Lett. 2007, 90, 161116.

[91]

Hanne, J.; Falk, H. J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127.

[92]

Cheng, Y.; Zhang, J. N.; Zhou, T. K.; Wang, Y. Y.; Xu, Z. H.; Yuan, X. Y.; Fang, L. Photonic neuromorphic architecture for tens-of-task lifelong learning. Light Sci. Appl. 2024, 13, 56.

[93]

Kargozar, S.; Hoseini, S. J.; Milan, P. B.; Hooshmand, S.; Kim, H. W.; Mozafari, M. Quantum dots: A review from concept to clinic. Biotechnol. J. 2020, 15, 2000117.

[94]

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

[95]

Algar, W. R.; Tavares, A. J.; Krull, U. J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 2010, 673, 1–25.

[96]

Zhang, Y. N.; Wu, J. Y.; Qu, Y.; Jia, L. N.; Jia, B. H.; Moss, D. J. Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films. J. Lightwave Technol. 2021, 39, 4671–4683.

[97]
George, J.; Amin, R.; Mehrabian, A.; Khurgin, J.; El-Ghazawi, T.; Prucnal, P. R.; Sorger, V. J. Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks. In Proceedings of the Signal Processing in Photonic Communications 2018, Zurich, 2018, pp 3–4.
[98]

Shi, W. X.; Jiang, X.; Huang, Z.; Li, X.; Han, Y. Y.; Yang, S. G.; Zhong, H. Z.; Chen, H. W. Lensless opto-electronic neural network with quantum dot nonlinear activation. Photonics Res. 2024, 12, 682–690.

[99]

Chen, H.; Feng, J. N.; Jiang, M. W.; Wang, Y. Q.; Lin, J.; Tan, J. B.; Jin, P. Diffractive deep neural networks at visible wavelengths. Engineering 2021, 7, 1483–1491.

[100]

Epps, R. W.; Bowen, M. S.; Volk, A. A.; Abdel-Latif, K.; Han, S. Y.; Reyes, K. G.; Amassian, A.; Abolhasani, M. Artificial chemist: An autonomous quantum dot synthesis bot. Adv. Mater. 2020, 32, 2001626.

[101]

Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorović, P.; Sagar, L. K.; Sargent, E. H. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 2019, 13, 11122–11128.

[102]

Bezinge, L.; Maceiczyk, R. M.; Lignos, I.; Kovalenko, M. V.; deMello, A. J. Pick a color MARIA: Adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Appl. Mater. Interfaces 2018, 10, 18869–18878.

[103]

Giroux, M. S.; Zahra, Z.; Salawu, O. A.; Burgess, R. M.; Ho, K. T.; Adeleye, A. S. Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure. Environ. Sci.: Nano 2022, 9, 867–910.

[104]

Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172.

[105]

Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S. M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480.

[106]

Li, W. L.; Achal, V. Environmental and health impacts due to e-waste disposal in China-A review. Sci. Total Environ. 2020, 737, 139745.

[107]

Robinson, B. H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 2009, 408, 183–191.

[108]

Velasco, V. A.; Agudelo, A. C.; Hotza, D.; González, S. Y. G. Context and prospects of carbon quantum dots applied to environmental solutions. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100884.

[109]

Choi, H.; Jeong, S. A review on eco-friendly quantum dot solar cells: Materials and manufacturing processes. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 349–358.

Nano Research
Pages 10570-10584
Cite this article:
Chen J, Dai C, Zheng Y, et al. All-quantum-dot information system. Nano Research, 2024, 17(12): 10570-10584. https://doi.org/10.1007/s12274-024-6911-z
Topics:

474

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 June 2024
Revised: 22 July 2024
Accepted: 24 July 2024
Published: 31 August 2024
© Tsinghua University Press 2024
Return