AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Ag-doped Cu nanoboxes supported by rGO for ultra-stable Zn anodes in aqueous Zn-ion battery

Lirong Feng1Jinkai Zhang1Dong Wang1Xinhui Jin1Haoyu Ma1Kai Zhang2Xiaohui Guo1( )
Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Goettingen, Wilhelmsplatz 1 (Aula) 37073 Göttingen, Germany
Show Author Information

Graphical Abstract

Abstract

Advanced aqueous zinc-ion batteries have been greatly limited application caused by uncontrollable dendrite formation, hydrogen evolution and zinc metal corrosion, which can lead to quick failure of the battery and low Coulombic efficiency. Three-dimensional (3D) porous host strategy is available to limit zinc dendrite growth and electrode interfacial side reactions. Herein, an ingenious local levelling and macro stereo strategy is rationally designed as a Zn plating/stripping scaffold. The flexible 3D carbon cloth as the structural and conductive framework is coated by Ag-Cu-reduced graphene oxide (Ag-Cu-rGO) and Ketjen black. Benefiting from the uniformly dispersed zincophilic Ag on the surface of Cu nanoboxes, the anode suppresses hydrogen evolution side reactions and reduces local current density via more nucleation sites. In addition, rGO homogenizes both the ion flux and electric field at the electrode surface, resulting from high conductivity and large specific surface area of rGO. As a result, the fabricated Zn//Ag-Cu-rGO asymmetric cells exhibit stable voltage profiles for plating and striping 250 cycles, maintain nearly 100% Coulombic efficiency at 2 mA·cm−2 and 1 mAh·cm−2 as well as behave an extremely small nucleation overpotential of 34 mV and Ag-Cu-rGO@Zn symmetric cell presents highly uniform electric field with a superior lifespan over 2500 h at 1 mA·cm−2 and 1 mAh·cm−2, respectively. Meanwhile, this efficient Ag-Cu-rGO@Zn anode also enables a substantially stable Ag-Cu-rGO@Zn//V2O3 full cell over 2000 cycles. The work opens a new avenue of 3D host for durable and dendrite-free flexible aqueous zinc-ion batteries anode.

Electronic Supplementary Material

Download File(s)
6912_ESM.pdf (17.9 MB)

References

[1]

Liu, H.; Xin, Z. J.; Cao, B.; Zhang, B.; Fan, H. J.; Guo, S. J. Versatile MXenes for aqueous zinc batteries. Adv. Sci. 2024, 11, 2305806.

[2]

Zeng, Y. X.; Luan, D. Y.; Lou, X. W. Recent advances in electrode engineering strategies for aqueous Zn-based batteries. Chem 2023, 9, 1118–1146.

[3]

Yu, A.; Zhang, W.; Joshi, N.; Yang, Y. Recent advances in anode design for mild aqueous Zn-ion batteries. Energy Storage Mater. 2024, 64, 103075.

[4]

Sun, G. Q.; Zhou, M. Q.; Dong, X. Y.; Zang, S. Q.; Qu, L. T. An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Res. 2022, 15, 5081–5088.

[5]

Zhu, K. P.; Luo, J.; Zhang, D. H.; Wang, N. Y.; Pan, S. B.; Zhou, S. J.; Zhang, Z. J.; Guo, G. D.; Yang, P.; Fan, Y. et al. Molecular engineering enables hydrogel electrolyte with ionic hopping migration and self-healability toward dendrite-free zinc-metal anodes. Adv. Mater. 2024, 36, 2311082.

[6]

Chen, J. Y.; Wang, Y. Z.; Tian, Z. N.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Recent developments in three-dimensional Zn metal anodes for battery applications. InfoMat 2024, 6, e12485.

[7]

Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.

[8]

Zhang, Y. Y.; Zheng, X. B.; Wang, N. N.; Lai, W. H.; Liu, Y.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Anode optimization strategies for aqueous zinc-ion batteries. Chem. Sci. 2022, 13, 14246–14263.

[9]

Zhang, X. F.; Zhang, L.; Jia, X. Y.; Song, W.; Liu, Y. C. Design strategies for aqueous zinc metal batteries with high zinc utilization: From metal anodes to anode-free structures. Nano-Micro Lett. 2024, 16, 75.

[10]

Ruan, P. C.; Chen, X. H.; Qin, L. P.; Tang, Y.; Lu, B. A.; Zeng, Z. Y.; Liang, S. Q.; Zhou, J. Achieving highly proton-resistant Zn-Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 2023, 35, 2300577.

[11]

Wang, X. Z.; Xu, Z. M.; Zhang, W. Y.; Ding, G.; Zhang, L. S.; Feng, Y. B.; Yong, Z. Z.; Gong, W. B.; Xue, P.; Yu, L. et al. Horizontally arranged Zn platelet deposition regulated by Bi2O3/Bi toward high-rate and dendrite-free 3D Zn composite anode. Small 2024, 20, 2311851.

[12]

Xu, W. W.; Li, J. T.; Liao, X. B.; Zhang, L.; Zhang, X. M.; Liu, C. Z.; Amine, K.; Zhao, K. N.; Lu, J. Fluoride-rich, organic–inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J. Am. Chem. Soc. 2023, 145, 22456–22465.

[13]

Zhou, J. H.; Wu, F.; Mei, Y.; Hao, Y. T.; Li, L.; Xie, M.; Chen, R. J. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2200782.

[14]

Liu, Y. W.; Xu, J. X.; Li, J.; Yang, Z. W.; Huang, C. C.; Yu, H. X.; Zhang, L. Y.; Shu, J. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coord. Chem. Rev. 2022, 460, 214477.

[15]

Yang, W. J.; Yu, R. H.; Zhu, S. H.; Wang, G.; Zhang, B. M.; Li, J. H.; Xue, S. Y.; Qi, S. Y.; Zhang, L.; Zhao, K. N. Artificial hydrophilic organic and dendrite-suppressed inorganic hybrid solid electrolyte interface layer for highly stable zinc anodes. ACS Appl. Mater. Interfaces 2024, 16, 10218–10226.

[16]

Yang, X. Z.; Li, W. P.; Lv, J. Z.; Sun, G. J.; Shi, Z. X.; Su, Y. W.; Lian, X. Y.; Shao, Y. Y.; Zhi, A. M.; Tian, X. Z.; Bai, X. D.; Liu, Z. F.; Sun, J. Y. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res. 2022, 15, 9785–9791.

[17]

Chen, J. Z.; Liu, N.; Dong, W. J.; Xu, Y.; Cao, Y. G.; Zhang, S. C.; Hou, J. S.; Bi, H.; Lin, T. Q.; Huang, F. Q. Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive. Adv. Funct. Mater. 2024, 34, 2313925.

[18]

Wang, C. L.; Gao, Y. X.; Sun, L. S.; Zhao, Y.; Yin, D. M.; Wang, H. R.; Cao, J. C.; Cheng, Y.; Wang, L. M. Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Res. 2022, 15, 8076–8082.

[19]

Hu, L. T.; Xiao, P.; Xue, L. L.; Li, H. Q.; Zhai, T. Y. The rising zinc anodes for high-energy aqueous batteries. EnergyChem 2021, 3, 100052.

[20]

Zhao, Y. M.; Wei, M. Y.; Tan, L. L.; Luo, Z. X.; Peng, J. H.; Wei, C. G.; Kang, F. Y.; Wang, J. G. Manipulating the host-guest chemistry of cucurbituril to propel highly reversible zinc metal anodes. Small 2024, 20, 2308164.

[21]

Li, Y. H.; Yao, H.; Liu, X. J.; Yang, X. T.; Yuan, D. Roles of electrolyte additive in Zn chemistry. Nano Res. 2023, 16, 9179–9194.

[22]

Kao, C. C.; Liu, J. H.; Ye, C.; Zhang, S. J.; Hao, J. N.; Qiao, S. Z. Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries. J. Mater. Chem. A 2023, 11, 23881–23887.

[23]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[24]

Sui, B. B.; Sha, L.; Wang, P. F.; Gong, Z.; Zhang, Y. H.; Wu, Y. H.; Zhao, L. N.; Tang, J. J.; Shi, F. N. In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries. J. Energy Storage 2024, 82, 110550.

[25]

Sun, X.; Lv, X. W.; Zhang, M.; Shi, K. Q.; Li, Z. J.; Pan, X. H.; Lian, T.; Chen, R. J.; Wu, F.; Li, L. Construction of selective ion transport polymer at anode-electrolyte interface for stable aqueous zinc-ion batteries. ACS Nano 2024, 18, 8452–8462.

[26]

Ying, H. J.; Huang, P. F.; Zhang, Z.; Zhang, S. L.; Han, Q. Z.; Zhang, Z. H.; Wang, J. L.; Han, W. Q. Freestanding and flexible interfacial layer enables bottom–up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 2022, 14, 180.

[27]

Wang, L. Q.; Zhao, Z. D.; Yao, Y.; Zhang, Y. X.; Meng, Y. H.; Hu, B.; Kang, J. M.; Guo, J.; Zhang, L.; Lu, H. B. Highly fluorinated non-aqueous solid–liquid hybrid interface realizes water impermeability for anti-calendar aging zinc metal batteries. Energy Storage Mater. 2023, 62, 102920.

[28]

Liu, H.; Xu, Z. J.; Cao, B.; Xin, Z. J.; Lai, H. J.; Gao, S.; Xu, B.; Yang, J. L.; Xiao, T.; Zhang, B. et al. Marangoni-driven self-assembly MXene As functional membrane enables dendrite-free and flexible zinc-iodine pouch cells. Adv. Energy Mater. 2024, 14, 2400318.

[29]

Shi, Z. H.; Yang, M.; Ren, Y. F.; Wang, Y. Z.; Guo, J. H.; Yin, J.; Lai, F. L.; Zhang, W. L.; Chen, S. L.; Alshareef, H. N. et al. Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 2023, 17, 21893–21904.

[30]

Yang, Z. Y.; Lai, F. Y.; Mao, Q. J.; Liu, C.; Wang, R. Y.; Lu, Z. H.; Zhang, T. R.; Liu, X. F. Reversing zincophobic/hydrophilic nature of metal-N-C via metal-coordination interaction for dendrite-free Zn anode with high depth-of-discharge. Adv. Mater. 2024, 36, 2311637.

[31]

Xu, X. Y.; Li, S. M.; Cao, Z. J.; Yang, S. B.; Li, B. Boosting ion diffusion and charge transfer by zincophilic accordion arrays to achieve ultrafast aqueous zinc metal batteries. Adv. Energy Mater. 2024, 14, 2303971.

[32]

Shi, G.; Peng, X. W.; Zeng, J. M.; Zhong, L. X.; Sun, Y.; Yang, W.; Zhong, Y. L.; Zhu, Y. X.; Zou, R.; Admassie, S. et al. A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-ion battery. Adv. Mater. 2023, 35, 2300109.

[33]

Mu, Y. B.; Li, Z.; Wu, B. K.; Huang, H. D.; Wu, F. H.; Chu, Y. Q.; Zou, L. F.; Yang, M.; He, J. F.; Ye, L. et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 2023, 14, 4205.

[34]

Jian, Q. P.; Guo, Z. X.; Zhang, L. C.; Wu, M. C.; Zhao, T. S. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 2021, 425, 130643.

[35]

Cai, Z.; Ou, Y. T.; Zhang, B.; Wang, J. D.; Fu, L.; Wan, M. T.; Li, G. C.; Wang, W. Y.; Wang, L.; Jiang, J. J. et al. A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA·cm−2 and 20 mAh·cm−2. J. Am. Chem. Soc. 2021, 143, 3143–3152.

[36]

Zhou, A. B.; Wang, H. R.; Hu, X.; Zhang, F. L.; Zhao, Y.; Hu, Z. Q.; Zhang, Q. K.; Song, Z. H.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Molecular recognition effect enabled by novel crown ether as macrocyclic host towards highly reversible Zn anode. Sci. Bull. 2023, 68, 2170–2179.

[37]

Wu, Q.; Huang, J.; Zhang, J. L.; Yang, S.; Li, Y.; Luo, F. S.; You, Y.; Li, Y. Q.; Xie, H. B.; Chen, Y. W. Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh-rate and dendrite-free Zn anodes for rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2024, 63, e202319051.

[38]

Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 2022, 16, 1013–1024.

[39]

Tian, C.; Wang, H. F.; Xie, L. Y.; Zhong, Y. J.; Hu, Y. Arrays of hierarchical zincophilic nanorods with trapping-and-leveling deposition for ultrastable Zn metal anodes. Adv. Energy Mater. 2024, 14, 2400276.

[40]

Xu, H. T.; Yang, W. Y.; Li, M.; Liu, H. B.; Gong, S. Q.; Zhao, F.; Li, C. L.; Qi, J. J.; Wang, H. H.; Peng, W. C. et al. Advances in aqueous zinc ion batteries based on conversion mechanism: Challenges, strategies, and prospects. Small 2024, 20, 2310972.

[41]

Zeng, Y. X.; Pei, Z. H.; Luan, D. Y.; Lou, X. W. D. Atomically dispersed zincophilic sites in N,P-codoped carbon macroporous fibers enable efficient Zn metal anodes. J. Am. Chem. Soc. 2023, 145, 12333–12341.

[42]

Chen, T.; Huang, F.; Wang, Y. N.; Yang, Y.; Tian, H.; Xue, J. M. Unveiling the synergistic effect of ferroelectric polarization and domain configuration for reversible zinc metal anodes. Adv. Sci. 2022, 9, 2105980.

[43]

Zeng, Y. X.; Sun, P. X.; Pei, Z. H.; Jin, Q.; Zhang, X. T.; Yu, L.; Lou, X. W. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2200342.

[44]

Zhang, G. Y.; Liu, X.; Wang, L.; Xing, G. Y.; Tian, C. G.; Fu, H. G. Copper collector generated Cu+/Cu2+ redox pair for enhanced efficiency and lifetime of Zn-Ni/air hybrid battery. ACS Nano 2022, 16, 17139–17148.

[45]

Shi, X. W.; Lee, A.; Yang, B.; Gao, L. X.; Ning, H. M.; Huang, K. Y.; Luo, X. L.; Zhang, L. D.; Zhang, J. F.; Yang, C. et al. A 3D cross-linked hierarchical hydrogel E-skin with sensing of touch position and pressure. Carbon 2024, 216, 118514.

[46]

Zeng, X.; Yang, Z. H.; Fan, M. K.; Cui, F.; Meng, J. L.; Chen, H. Z.; Chen, L. L. Shape-controlled growth of three-dimensional flower-like ZnO@Ag composite and its outstanding electrochemical performance for Ni-Zn secondary batteries. J. Colloid Interface Sci. 2020, 562, 518–528.

[47]

Zeng, L.; He, H. N.; Chen, H. Y.; Luo, D.; He, J.; Zhang, C. H. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 2022, 12, 2103708.

[48]

Zou, Y. H.; Wu, Y. Z.; Wei, W. Z.; Qiao, C. P.; Lu, M. Y.; Su, Y. W.; Guo, W. Y.; Yang, X. Z.; Song, Y. Q.; Tian, M. et al. Establishing pinhole deposition mode of Zn via scalable monolayer graphene film. Adv. Mater. 2024, 36, 2313775.

[49]

Cui, J. W.; Tao, Z. R.; Wu, J. Y.; Ma, S. S.; Yang, Y. Y.; Zhang, J. Y. A stable triazole-based covalent gel for long-term cycling Zn anode in zinc-ion batteries. Small 2023, 19, 2304640.

[50]

Cai, X. X.; Wang, X. X.; Bie, Z.; Jiao, Z. Y.; Li, Y. R.; Yan, W.; Fan, H. J.; Song, W. X. A layer-by-layer self-assembled bio-macromolecule film for stable zinc anode. Adv. Mater. 2023, 36, 2306734.

[51]

He, H. N.; Zeng, L.; Luo, D.; He, J.; Li, X. L.; Guo, Z. P.; Zhang, C. H. 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free Zinc batteries. Adv. Mater. 2023, 35, 2211498.

[52]

Zong, Q.; Lv, B.; Liu, C. F.; Yu, Y. D.; Kang, Q. L.; Li, D. Y.; Zhu, Z. J.; Tao, D. W.; Zhang, J. J.; Wang, J. Y. et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating. ACS Energy Lett. 2023, 8, 2886–2896.

Nano Research
Cite this article:
Feng L, Zhang J, Wang D, et al. Ag-doped Cu nanoboxes supported by rGO for ultra-stable Zn anodes in aqueous Zn-ion battery. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6912-y
Topics:

93

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 June 2024
Revised: 22 July 2024
Accepted: 24 July 2024
Published: 17 August 2024
© Tsinghua University Press 2024
Return