AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layer-controlled 2D Sn4P3 via space-confined topochemical transformation for enhanced lithium cycling performance

Jianan Gu1Yongzheng Zhang2( )Bingbing Fan1Yanlong Lv1Yanhong Wang1Ruohan Yu3( )Meicheng Li1( )
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 100096, China
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Wuhan University of Technology, Sanya 572000, China
Show Author Information

Graphical Abstract

We adopt a pioneering and efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin two-dimensional (2D) Sn4P3 nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn4P3 nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of roughly two layers (~ 2.2 nm).

Abstract

Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn4P3 nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn4P3 nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn4P3 nanosheets display an exceptional initial capacity of 1088 mAh·g−1, nearing the theoretical value of 1230 mAh·g−1. Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn4P3, marking a significant advancement in developing high-performance energy storage systems.

Electronic Supplementary Material

Download File(s)
6915_ESM.pdf (1.1 MB)

References

[1]

Zeng, L.; Tang, T. F.; Liang, Y. F.; Jiang, S. W.; Xu, X. T.; Wang, F. Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy. J. Power Sources 2024, 594, 233990.

[2]

Gu, J. N.; Shi, Y.; Du, Z. G.; Li, M. C.; Yang, S. B. Stress relief in metal anodes: Mechanisms and applications. Adv. Energy Mater. 2023, 13, 2302091.

[3]

Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Cl x ) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

[4]

Gu, J. N.; Chen, H.; Shi, Y.; Cao, Z. J.; Du, Z. G.; Li, B.; Yang, S. B. Eliminating lightning-rod effect of lithium anodes via sine-wave analogous MXene layers. Adv. Energy Mater. 2022, 12, 2201181.

[5]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[6]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[7]

Su, A. Y.; Apostol, P.; Wang, J. D.; Vlad, A.; Dincă, M. Electrochemical capacitance traces with interlayer spacing in two-dimensional conductive metal-organic frameworks. Angew. Chem., Int. Ed. 2024, 63, e202402526.

[8]

Singh, M. K.; Krishnan, S.; Singh, K.; Rai, D. K. Effective assembling of nickel oxide-reduced graphene oxide heterostructures for ultrahigh capacity supercapattery. J. Power Sources 2024, 595, 234060.

[9]

Liu, J. J.; Xing, G. L.; Chen, L. 2D conjugated metal-organic frameworks: Defined synthesis and tailor-made functions. Acc. Chem. Res. 2024, 57, 1032–1045.

[10]

Cao, Z. J.; Zhang, Y. Z.; Cui, Y. L. S.; Gu, J. N.; Du, Z. G.; Shi, Y. Z.; Shen, K.; Chen, H.; Li, B.; Yang, S. B. Harnessing the unique features of 2D materials toward dendrite-free metal anodes. Energy Environ. Mater. 2022, 5, 45–67.

[11]

Shi, Y. Z.; Li, B.; Zhang, Y. Z.; Cui, Y. L. S.; Cao, Z. J.; Du, Z. G.; Gu, J. N.; Shen, K.; Yang, S. B. Tortuosity modulation toward high-energy and high-power lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003663.

[12]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. H.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[13]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[14]

Kollipara, P. S.; Wu, Z. L.; Yao, K.; Lin, D. D.; Ju, Z. Y.; Zhang, X. T.; Jiang, T. Z.; Ding, H. R.; Fang, J.; Li, J. G. et al. Three-dimensional optothermal manipulation of light-absorbing particles in phase-change gel media. ACS Nano 2024, 18, 8062–8072.

[15]
Kazim, S.; Huang, C.; Hemasiri, N. H.; Kulkarni, A.; Mathur, S.; Ahmad, S. MXene-based energy devices: From progressive to prospective. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202315694.
[16]

Hanan, A.; Lakhan, M. N.; Walvekar, R.; Khalid, M.; Prakash, C. Heteroatom-doped MXenes as electrocatalysts for hydrogen evolution reaction: A review on the recent advances, mechanisms and prospects. Chem. Eng. J. 2024, 483, 149107.

[17]

Hanan, A.; Awan, H. T. A.; Bibi, F.; Sulaiman, R. R. R.; Wong, W. Y.; Walvekar, R.; Singh, S.; Khalid, M. MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction: Recent developments and future outlook. J. Energy Chem. 2024, 92, 176–206.

[18]

Du, Z. G.; Guo, Y.; Wang, H. Y.; Gu, J. N.; Zhang, Y. Z.; Cheng, Z. J.; Li, B.; Li, S. M.; Yang, S. B. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS Nano 2021, 15, 19275–19283.

[19]

Chen, H.; Cao, Z. J.; Gu, J. N.; Cui, Y. L. S.; Zhang, Y. Z.; Zhao, Z. H.; Cheng, Z. J.; Zhao, Q.; Li, B.; Yang, S. B. Creating new battery configuration associated with the functions of primary and rechargeable lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003746.

[20]

Guo, T. Z.; Li, X.; Zhou, H. W.; Pang, L. X.; Zhou, T.; Shi, Z. Q.; Zhou, D. Effect of large-sized hydrophilic polypyrrole on electrochemical properties of MXene films. J. Power Sources 2024, 593, 233978.

[21]

Grebenchuk, S.; McKeever, C.; Grzeszczyk, M.; Chen, Z. L.; Šiškins, M.; McCray, A. R. C.; Li, Y.; Petford-Long, A. K.; Phatak, C. M.; Ruihuan, D. et al. Topological spin textures in an insulating van der Waals ferromagnet. Adv. Mater. 2024, 36, 2311949.

[22]

Das, P.; Marvi, P. K.; Ganguly, S.; Tang, X. W.; Wang, B.; Srinivasan, S.; Rajabzadeh, A. R.; Rosenkranz, A. MXene-based elastomer mimetic stretchable sensors: Design, properties, and applications. Nano-Micro Lett. 2024, 16, 135.

[23]

Mansouri, Z.; Yaden, A.; El Manjli, F.; Ben Ali, M.; Tiouitchi, G.; Naamane, S.; Mounkachi, O.; El Maalam, K. Peering into recent advances in passivation strategies of few-layer black phosphorene toward battery anodes: A review. J. Power Sources 2023, 587, 233719.

[24]

Gu, J. N.; Lv, Y. L.; Wang, Y. H.; Liu, L. H.; Li, M. C. Reconstructing 2D metallic Sn4P3 with high-conductive interlayer towards high-rate lithium storage. Electrochim. Acta 2024, 480, 143933.

[25]

Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447.

[26]

Kwon, N. H.; Yun, S. Y.; Lim, J.; Hwang, S. J. Recent advances in high-performance catalysts hybridized with two-dimensional conductive inorganic nanosheets. Nano Energy 2024, 122, 109315.

[27]

Bu, Y. J.; Cabulong, R. B.; Kim, B. S. Plant extract-based liquid phase exfoliation enables one-step green production of two-dimensional heterostructure nanohybrids capable of dramatic improvement in polymer properties. Green Chem. 2024, 26, 3488–3506.

[28]

Wang, P.; Zhao, Y.; Na, R.; Dong, W. K.; Duan, J. Y.; Cheng, Y.; Xu, B. Y.; Kong, D. N.; Liu, J. J.; Du, S. et al. Chemical vapor deposition synthesis of intrinsic high-temperature ferroelectric 2D CuCrSe2. Adv. Mater. 2024, 36, 2400655.

[29]

Tian, S.; Wang, W. J.; Zhao, M. F.; Han, Y. L.; Tian, Y. X.; Ji, S. X.; Yao, L.; Liu, L. X.; Ling, F. F.; Jia, Z. Y. et al. Room-temperature ferromagnetic CoSe2 nanoplates synthesized by chemical vapor deposition. J. Phys.: Condens. Matter 2024, 36, 135802.

[30]

Han, Z. Y.; Han, X. C.; Wu, S. Q.; Zhang, Q.; Hu, W. C.; Meng, Y.; Liang, Y.; Hu, J. Y.; Li, L.; Zhang, Q. et al. Phase and composition engineering of self-intercalated 2D metallic tantalum sulfide for second-harmonic generation. ACS Nano 2024, 18, 6256–6265.

[31]

Ghorai, S.; Rajan, A. G. From molecular precursors to MoS2 monolayers: Nanoscale mechanism of organometallic chemical vapor deposition. Chem. Mater. 2024, 36, 2698–2710.

[32]

Lyu, X. Y.; Wu, G. H.; Zheng, Z. Y.; Xia, S. X.; Xie, J. Y.; Xia, Y.; Fan, P. S.; Zhu, R.; Wang, Y. J.; Yang, D. et al. Molecularly confined topochemical transformation of MXene enables ultrathin amorphous metal-oxide nanosheets. ACS Nano 2024, 18, 2219–2230.

[33]

Zhu, Y. W.; Deng, W. F.; Tan, Y. M.; Shi, J. Q.; Wu, J. C.; Lu, W. B.; Jia, J. F.; Wang, S. Y.; Zou, Y. Q. In situ topochemical transformation of ZnIn2S4 for efficient photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Adv. Funct. Mater. 2023, 33, 2304985.

[34]

Handy, J. V.; Andrews, J. L.; Perez-Beltran, S.; Powell, D. R.; Albers, R.; Whittaker-Brooks, L.; Bhuvanesh, N.; Banerjee, S. A “Li-eye” view of diffusion pathways in a 2D intercalation material from topochemical single-crystal transformation. ACS Energy Lett. 2022, 7, 1960–1962.

[35]

Deng, Y. W.; Xi, X. Y.; Xia, Y.; Cao, Y. F.; Xue, S. Q.; Wan, S. Y.; Dong, A. G.; Yang, D. 2D FeP nanoframe superlattices via space-confined topochemical transformation. Adv. Mater. 2022, 34, 2109145.

[36]

Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765.

[37]

Gu, J. N.; Li, B.; Du, Z. G.; Zhang, C.; Zhang, D.; Yang, S. B. Multi-atomic layers of metallic aluminum for ultralong life lithium storage with high volumetric capacity. Adv. Funct. Mater. 2017, 27, 1700840.

[38]

Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

[39]

Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Hou, X. High lithium storage performance of Mn-doped Sn4P3 nanoparticles. Electrochim. Acta 2016, 210, 888–896.

[40]

Choi, J.; Kim, W. S.; Kim, K. H.; Hong, S. H. Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J. Mater. Chem. A 2018, 6, 17437–17443.

[41]

Luis Gomez-Camer, J.; Acebedo, B.; Ortiz-Vitoriano, N.; Monterrubio, I.; Galceran, M.; Rojo, T. Unravelling the impact of electrolyte nature on Sn4P3/C negative electrodes for Na-ion batteries. J. Mater. Chem. A 2019, 7, 18434–18441.

[42]

Xia, Y.; Han, S. B.; Zhu, Y. M.; Liang, Y. Y.; Gu, M. Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries. Energy Storage Mater. 2019, 18, 125–132.

[43]

Yadav, P.; Malik, W.; Dwivedi, P. K.; Jones, L. A.; Shelke, M. V. Electrospun nanofibers of tin phosphide (SnP0.94) nanoparticles encapsulated in a carbon matrix: A tunable conversion-cum-alloying lithium storage anode. Energy Fuels 2020, 34, 7648–7657.

Nano Research
Pages 9697-9703
Cite this article:
Gu J, Zhang Y, Fan B, et al. Layer-controlled 2D Sn4P3 via space-confined topochemical transformation for enhanced lithium cycling performance. Nano Research, 2024, 17(11): 9697-9703. https://doi.org/10.1007/s12274-024-6915-8
Topics:

409

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 July 2024
Revised: 16 July 2024
Accepted: 25 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return