AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Preparation technologies for polymer composites with high-directional thermal conductivity: A review

Yanshuai Duan1Huitao Yu1Fei Zhang2Mengmeng Qin1Wei Feng1( )
School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China
Show Author Information

Graphical Abstract

Abstract

With the rapid development of science and technology, electronic devices are moving towards miniaturization and integration, which brings high heat dissipation requirements. During the heat dissipation process of a heating element, heat may spread to adjacent components, causing a decrease in the performance of the element. To avoid this situation, the ability to directionally transfer heat energy is urgently needed. Therefore, thermal interface materials (TIMs) with directional high thermal conductivity are more critical in thermal management system of electronic devices. For decades, many efforts have been devoted to the design and fabrication of TIMs with high-directional thermal conductivity. Benefiting from the advantage in feasibility, low-cost and scalability, compositing with thermal conductive fillers has been proved to be promising strategy for fabricating the high-directional thermal conductive TIMs. This review summarizes the present preparation technologies of polymer composites with high-directional thermal conductivity based on structural engineering of thermal conductive fillers, focusing on the manufacturing process, mechanisms, achievements, advantages and disadvantages of different technologies. Finally, we summarize the existing problems and potential challenges in the field of directional high thermal conductivity composites.

References

[1]

Han, Y. X.; Ruan, K. P.; He, X. Y.; Tang, Y. S.; Guo, H.; Guo, Y. Q.; Qiu, H.; Gu, J. W. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem., Int. Ed. 2024, 63, e202401538.

[2]

Yu, H. T.; Guo, P. L.; Qin, M. M.; Han, G. Y.; Chen, L.; Feng, Y. Y.; Feng, W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 2022, 222, 109406.

[3]

Wang, B. W.; Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, W. Corrugated graphene paper reinforced silicone resin composite for efficient interface thermal management. Chin. J. Polym. Sci. 2024, 42, 1002–1014.

[4]

Li, H. T.; Fu, C. J.; Chen, N.; Zhang, T.; Liu, J. M.; Du, G. P.; Ren, L. L.; Zeng, X. L.; Sun, R. Ice-templated assembly strategy to construct three-dimensional thermally conductive networks of BN nanosheets and silver nanowires in polymer composites. Compos. Commun. 2021, 25, 100601.

[5]

Yu, H. T.; Peng, L. Q.; Chen, C.; Qin, M. M.; Feng, W. Regulatable orthotropic 3D hybrid continuous carbon networks for efficient Bi-directional thermal conduction. Nano-Micro Lett. 2024, 16, 198.

[6]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[7]

Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

[8]

An, D.; Li, Z. W.; Chen, H. F.; Liang, C. B.; Sun, Z. J.; Li, J. X.; Yao, J. R.; Liu, Y. Q.; Wong, C. Modulation of covalent bonded boron nitride/graphene and three-dimensional networks to achieve highly thermal conductivity for polymer-based thermal interfacial materials. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106890.

[9]

Yu, C. P.; Zhang, J.; Li, Z.; Tian, W.; Wang, L. J.; Luo, J.; Li, Q. L.; Fan, X. D.; Yao, Y. G. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A: Appl. Sci. Manuf. 2017, 98, 25–31.

[10]

Chen, S. C.; Feng, Y. Y.; Qin, M. M.; Ji, T. X.; Feng, W. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 2017, 116, 84–93.

[11]

Xie, J. W.; Zhou, G.; Sun, Y. X.; Zhang, F.; Kang, F. Y.; Li, B. H.; Zhao, Y.; Zhang, Y. H.; Feng, W.; Zheng, Q. B. Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 2024, 20, 2305163.

[12]

Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

[13]

Zhang, F.; Feng, Y. Y.; Qin, M. M.; Ji, T. X.; Lv, F.; Li, Z. Y.; Gao, L.; Long, P.; Zhao, F. L.; Feng, W. Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges. Carbon 2019, 145, 378–388.

[14]

Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng.: R: Rep. 2020, 142, 100580.

[15]

An, D.; Cheng, S. S.; Zhang, Z. Y.; Jiang, C.; Fang, H. M.; Li, J. X.; Liu, Y. Q.; Wong, C. P. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections. Carbon 2019, 155, 258–267.

[16]

Huang, C. L.; Qian, X.; Yang, R. G. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng.: R: Rep. 2018, 132, 1–22.

[17]

Huang, X. Y.; Zhi, C. Y.; Lin, Y.; Bao, H.; Wu, G. N.; Jiang, P. K.; Mai, Y. W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng.: R: Rep. 2020, 142, 100577.

[18]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[19]

Qin, M. M.; Xu, Y. X.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.

[20]

Zhang, F.; Sun, Y. X.; Guo, L.; Zhang, Y. H.; Liu, D.; Feng, W.; Shen, X.; Zheng, Q. B. Microstructural welding engineering of carbon nanotube/polydimethylsiloxane nanocomposites with improved interfacial thermal transport. Adv. Funct. Mater. 2024, 34, 2311906.

[21]

Wu, X. F.; Shi, S. S.; Tang, B.; Chen, J.; Shan, L. M.; Gao, Y.; Wang, Y.; Jiang, T.; Sun, K.; Yang, K. et al. Achieving highly thermal conductivity of polymer composites by adding hybrid silver-carbon fiber fillers. Compos. Commun. 2022, 31, 101129.

[22]

Chi, Q. G.; Zhang, X. L.; Wang, X. B.; Zhang, C. H.; Zhang, Y. Q.; Tang, C.; Li, Z. H.; Zhang, T. D. High thermal conductivity of epoxy-based composites utilizing 3D porous boron nitride framework. Compos. Commun. 2022, 33, 101195.

[23]

Amin, M.; Putra, N.; Kosasih, E. A.; Prawiro, E.; Luanto, R. A.; Mahlia, T. M. I. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280.

[24]

Han, Y. X.; Shi, X. T.; Yang, X. T.; Guo, Y. Q.; Zhang, J. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 2020, 187, 107944.

[25]

Chen, C.; Xue, Y.; Li, Z.; Wen, Y. F.; Li, X. W.; Wu, F.; Li, X. J.; Shi, D. A.; Xue, Z. G.; Xie, X. L. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem. Eng. J. 2019, 369, 1150–1160.

[26]

Guo, Y. Q.; Lyu, Z. Y.; Yang, X. T.; Lu, Y. J.; Ruan, K. P.; Wu, Y. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B: Eng. 2019, 164, 732–739.

[27]

Gu, J. W.; Yang, X. T.; Lv, Z. Y.; Li, N.; Liang, C. B.; Zhang, Q. Y. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transf. 2016, 92, 15–22.

[28]

Guo, H. C.; Zhao, H. Y.; Niu, H. Y.; Ren, Y. J.; Fang, H. M.; Fang, X. X.; Lv, R. C.; Maqbool, M.; Bai, S. L. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 2021, 15, 6917–6928.

[29]

Zhang, Z. B.; Li, M. H.; Wang, Y. D.; Dai, W.; Li, L. H.; Chen, Y. P.; Kong, X. D.; Xu, K.; Yang, R. J.; Gong, P. et al. Ultrahigh thermal conductive polymer composites by the 3D printing induced vertical alignment of carbon fiber. J. Mater. Chem. A 2023, 11, 10971–10983.

[30]

Huang, T. Q.; Wang, T.; Jin, J.; Chen, M.; Wu, L. M. Design of silicon rubber/BN film with high through-plane thermal conductivity and ultra-low contact resistance. Chem. Eng. J. 2023, 469, 143874.

[31]

Wei, P.; Feng, L.; Chen, Q.; Dong, Z. J.; Song, Q.; Tian, R.; Zhang, R. X.; Guo, L. Y.; Xu, D. F.; Hou, M. D. et al. Highly thermally conductive composites with boron nitride nanoribbon array. Chem. Eng. J. 2024, 488, 150915.

[32]

Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

[33]

Chen, J.; Huang, X. Y.; Sun, B.; Jiang, P. K. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2019, 13, 337–345.

[34]

Liu, Z.; Li, J. H.; Liu, X. H. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503–6515.

[35]

Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

[36]

Zhou, G.; Yao, L.; Xie, Z. X.; Kamran, U.; Xie, J. W.; Zhang, F.; Park, S. J.; Zhang, Y. H. Controllable construction of CNT-Interconnected liquid metal networks for thermal management. Compos. Part A: Appl. Sci. Manuf. 2023, 175, 107743.

[37]

Zhang, Y. H.; Ye, B.; Zhou, G.; Li, L.; Geng, W. H.; Yao, L.; Zhang, F.; Xie, J. W.; Park, S. J.; Yang, Z. et al. Nacre-inspired conductive carbon nanotube-intercalated graphite nanoplatelet network as multifunctional thermal management materials. Compos. Part A: Appl. Sci. Manuf. 2023, 167, 107414.

[38]

Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@ f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897–906.

[39]
Guo, Y. Q.; Wang, S. S.; Zhang, H. T.; Guo, H.; He, M. K.; Ruan, K. P.; Yu, Z.; Wang, G. S.; Qiu, H.; Gu, J. W. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater., in press, DOI: 10.1002/adma.202404648.
[40]

Zhang, F.; Ren, D. H.; Zhang, Y. H.; Huang, L. Q.; Sun, Y. X.; Wang, W.; Zhang, Q.; Feng, W.; Zheng, Q. B. Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 2022, 431, 134102.

[41]

Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

[42]

Du, Y. K.; Shi, Z. X.; Dong, S.; Jin, H.; Ke, X.; Zhao, P.; Jiang, B. B.; You, F. Recent progress in fabrication and structural design of thermal conductive polymer composites. Chin. J. Polym. Sci. 2024, 42, 277–291.

[43]

Cho, H. B.; Nakayama, T.; Suematsu, H.; Suzuki, T.; Jiang, W. H.; Niihara, K.; Song, E.; Eom, N. S. A.; Kim, S.; Choa, Y. H. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets. Compos. Sci. Technol. 2016, 129, 205–213.

[44]

Zhang, F.; Ma, P. C.; Wang, J. X.; Zhang, Q.; Feng, W.; Zhu, Y. W.; Zheng, Q. B. Anisotropic conductive networks for multidimensional sensing. Mater. Horiz. 2021, 8, 2615–2653.

[45]

Du, L. L.; Zhang, B.; Wang, X. F.; Dong, C. H.; Mai, L.; Xu, L. 3D frameworks in composite polymer electrolytes: Synthesis, mechanisms, and applications. Chem. Eng. J. 2023, 451, 138787.

[46]

Wang, Z. R.; Fan, L.; Li, R. L.; Xu, Y. C.; Fu, Q. Preparation of polymer composites with high thermal conductivity by constructing a “double thermal conductive network” via electrostatic spinning. Compos. Commun. 2022, 36, 101371.

[47]

Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.

[48]

Wu, X. H.; Zhang, X. Y.; Yan, X. X.; Zhang, C.; Zhang, Y. Q.; Li, P. Y.; Li, N.; Liu, H. L.; Wang, Z. W. A review: From the whole process of making thermal conductive polymer, the effective method of improving thermal conductivity. J. Polym. Sci. 2024, 62, 2410–2442.

[49]

Jin, L. Y.; Wang, P.; Cao, W. J.; Song, N.; Ding, P. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 2022, 14, 1747–1756.

[50]

Min, P.; Liu, J.; Li, X. F.; An, F.; Liu, P. F.; Shen, Y. X.; Koratkar, N.; Yu, Z. Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 2018, 28, 1805365.

[51]

Zhan, C.; Cui, W. Z.; Li, L. J.; Quan, X. J.; Zhang, Y. Q.; Xu, Y.; Xiao, F.; Li, W. P. Thermal conductivity and compressive strength of silicone rubber composites enhanced by aligned carbon nanofiber scaffold. Polym. Compos. 2022, 43, 5291–5300.

[52]

Yao, Y. M.; Zhu, X. D.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 2018, 10, 9669–9678.

[53]

Lian, G.; Tuan, C. C.; Li, L. Y.; Jiao, S. L.; Wang, Q. L.; Moon, K. S.; Cui, D. L.; Wong, C. P. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 2016, 28, 6096–6104.

[54]

Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

[55]

Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

[56]

Scotti, K. L.; Dunand, D. C. Freeze casting—A review of processing, microstructure and properties via the open data repository, FreezeCasting. net. Prog. Mater. Sci. 2018, 94, 243–305.

[57]

Chaudary, A.; Patoary, M. K.; Zhang, M. L.; Chudhary, T.; Farooq, A.; Liu, L. F. Structurally integrated thermal management of isotropic and directionally ice-templated nanocellulose/chitosan aerogels. Cellulose 2022, 29, 8265–8282.

[58]

Liu, C. L.; Duan, X. Y.; Zhang, W.; Huo, Q. Q.; Sui, X.; Liu, Y. Q.; Liang, C. B. Stable self-crosslinking phase change composites with vertically aligned boron nitride for high thermal conductivity thermal interface materials. Ceram. Int. 2024, 50, 19829–19837.

[59]

Yoshitomi, T.; Matsumoto, T.; Nishino, T. Highly thermally conductive nanocomposites prepared by the ice-templating alignment of nanodiamonds in the thickness direction. ACS Appl. Polym. Mater. 2023, 5, 8349–8358.

[60]

Zeng, X. L.; Yao, Y. M.; Gong, Z. Y.; Wang, F. F.; Sun, R.; Xu, J. B.; Wong, C. P. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 2015, 11, 6205–6213.

[61]

Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

[62]

Wang, F.; Yang, Z. J.; Hu, X. Z.; Pan, Y.; Lu, Y.; Jiang, M. Coaxial 3D printed anisotropic thermal conductive composite aerogel with aligned hierarchical porous carbon nanotubes and cellulose nanofibers. Smart Mater. Struct. 2022, 31, 045002.

[63]

Zhu, C. Y.; Chen, Z. H.; Zhu, R. J.; Sheng, N.; Rao, Z. H. Vertically aligned Al2O3 fiber framework leading to anisotropically enhanced thermal conductivity of epoxy composites. Adv. Eng. Mater. 2021, 23, 2100327.

[64]

Chen, Z. H.; Zhao, C. Z.; Meng, W. J.; Sheng, N.; Zhu, C. Y.; Rao, Z. H. Anisotropically enhancing thermal conductivity of epoxy composite with a low filler load by an AlN/C fiber skeleton. Ceram. Int. 2022, 48, 17604–17610.

[65]

Duan, S. Z.; Wu, X. W.; Ao, W. H.; Lei, Z.; Leng, G. Q.; Fang, M. H.; Huang, Z. H.; Luo, B. C. Mesoscopic combinatorial design of anisotropic graphitic carbon with ordered porous frameworks for thermoelectric conversion. Carbon 2024, 224, 119052.

[66]

Zhao, C. Z.; Guo, P.; Sheng, N.; Zhu, C. Y. Bionic woven SiC porous scaffold with enhanced thermal transfer, leakage-resistant and insulation properties to support phase change materials. Thermochim. Acta 2023, 719, 179409.

[67]

Guo, P.; Sheng, N.; Zhu, R. J.; Zhu, C. Y.; Rao, Z. H. Improved anisotropic thermal transfer property of form-stable phase change material supported by 3D bionic porous copper. ACS Sustain. Chem. Eng. 2023, 11, 3324–3333.

[68]

Qiu, F.; Xia, Y. G.; Wu, T.; Li, S. Y.; Xing, S. C.; Jiao, X. L.; Chen, D. R. Anisotropic 3D nanofibrous porous material fabrication by a liquid film-assisted gas templating strategy for thermal insulation. ACS Appl. Nano Mater. 2021, 4, 14136–14145.

[69]

Xu, X. W.; Hu, R. C.; Chen, M. Y.; Dong, J. F.; Xiao, B.; Wang, Q.; Wang, H. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 2020, 397, 125447.

[70]

Song, S. Q.; Wang, J. Y.; Liu, C.; Wang, J. C.; Zhang, Y. A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3D interconnected graphene at an ultralow filler loading. Nanoscale 2019, 11, 15234–15244.

[71]

Xiao, C.; Tang, Y. L.; Chen, L.; Zhang, X.; Zheng, K.; Tian, X. Y. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure. Compos. Part A: Appl. Sci. Manuf. 2019, 121, 330–340.

[72]

Song, J. N.; Chen, C. B.; Zhang, Y. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos. Part A: Appl. Sci. Manuf. 2018, 105, 1–8.

[73]

Shen, H.; Guo, J.; Wang, H.; Zhao, N.; Xu, J. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 2015, 7, 5701–5708.

[74]

Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

[75]

Liu, Z. D.; Chen, Y. P.; Li, Y. F.; Dai, W.; Yan, Q. W.; Alam, F. E.; Du, S. Y.; Wang, Z. W.; Nishimura, K.; Jiang, N. et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 2019, 11, 17600–17606.

[76]

Zhang, X. F.; Zhou, S. L.; Xie, B.; Lan, W.; Fan, Y. W.; Hu, R.; Luo, X. B. Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method. Compos. Sci. Technol. 2021, 213, 108922.

[77]

Zhan, C.; Cui, W. Z.; Li, L. J.; Quan, X. J.; Zhang, Y. Q.; Xiao, F. Dual-aligned carbon nanofiber scaffolds as heat conduction path to enhance thermal conductivity of polymer composites. Compos. Sci. Technol. 2023, 231, 109823.

[78]

Uetani, K.; Ata, S.; Tomonoh, S.; Yamada, T.; Yumura, M.; Hata, K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 2014, 26, 5857–5862.

[79]

Ji, T. X.; Feng, Y. Y.; Qin, M. M.; Li, S. W.; Zhang, F.; Lv, F.; Feng, W. Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 2018, 131, 149–159.

[80]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

[81]

Qin, M. M.; Feng, Y. Y.; Ji, T. X.; Feng, W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 2016, 104, 157–168.

[82]

Zhao, Y.; Shi, J. L.; Wang, H. Q.; Tao, Z. C.; Liu, Z. J.; Guo, Q. G.; Liu, L. A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in-situ grown carbon nanotubes. Carbon 2013, 51, 427–430.

[83]

Feng, W.; Qin, M. M.; Lv, P.; Li, J. P.; Feng, Y. Y. A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 2014, 77, 1054–1064.

[84]

Li, S. W.; Feng, Y. Y.; Li, Y. L.; Feng, W.; Yoshino, K. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 2016, 109, 131–140.

[85]

Cai, Y.; Yu, H. T.; Chen, C.; Feng, Y. Y.; Qin, M. M.; Feng, W. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon 2022, 196, 902–912.

[86]

Huang, S.; He, G.; Yang, C.; Wu, J. M.; Guo, C.; Hang, T.; Li, B. H.; Yang, C. D.; Liu, D.; Chen, H. J. et al. Stretchable strain vector sensor based on parallelly aligned vertical graphene. ACS Appl. Mater. Interfaces 2019, 11, 1294–1302.

[87]

Yan, Q. W.; Gao, J. Y.; Chen, D.; Tao, P. D.; Chen, L.; Ying, J. F.; Tan, X.; Lv, L.; Dai, W.; Alam, F. E. et al. A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 2022, 14, 11171–11178.

[88]

Yan, Q. W.; Alam, F. E.; Gao, J. Y.; Dai, W.; Tan, X.; Lv, L.; Wang, J. J.; Zhang, H.; Chen, D.; Nishimura, K. et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

[89]

Xu, S. C.; Cheng, T.; Yan, Q. W.; Shen, C.; Yu, Y.; Lin, C. T.; Ding, F.; Zhang, J. Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 2022, 9, 2200737.

[90]

He, J.; Guo, Y. L.; Tian, K. H.; Wang, H.; Su, Z.; Huang, W. Q.; Tian, X. Y. Surface growth of MG(multilayer graphene)-SiC nanofillers/poly(vinylidene fluoride) composites for improving thermal conductivity and maintaining electrical insulation. Mater. Res. Express 2017, 4, 085016.

[91]

Zhang, F.; Guo, L.; Shi, Y.; Jin, Z. X.; Cheng, Y. B.; Zhang, Z. X.; Li, C. B.; Zhang, Y. H.; Wang, C. H.; Feng, W. et al. Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches. Chem. Eng. J. 2023, 452, 139664.

[92]

Zhang, F.; Li, C. B.; Zhang, Y. H.; Sun, Y. X.; Yao, X. M.; Guo, L.; Wu, J. Y.; Dai, K.; Wu, J. T.; Zheng, Q. B. Facile preparation of large-scale expanded graphite/polydimethylsiloxane composites for highly-efficient electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 23145–23154.

[93]

Zhou, G.; Li, L.; Lee, S. Y.; Zhang, F.; Xie, J. W.; Ye, B.; Geng, W. H.; Xiao, K. K.; Lee, J. H.; Park, S. J. et al. Dual-strategy-encapsulated phase change materials with thermal immune functions for efficient energy storage and all-climate battery thermal management. Compos. Sci. Technol. 2023, 243, 110256.

[94]

Wu, H. H.; Zhang, H. L.; Gao, A. D.; Gong, L.; Ji, Y. X.; Zeng, S. Y.; Li, S. W.; Wang, X. L. Friction and wear performance of aluminum-based self-lubricating materials derived from the 3D printed graphite skeletons with different morphologies and orientations. Tribol. Int. 2024, 195, 109614.

[95]

Lv, R. C.; Ren, L. C.; Kang, L.; Niu, H. Y.; Bashir, A.; Bai, S. L. Fabrication and performance of ultrathin and adhesive composite film with high out-of-plane thermal conductivity using 3D printing and microwire-cutting assistance. Compos. Part A: Appl. Sci. Manuf. 2024, 176, 107828.

[96]

Chen, M. H.; Chen, X. J.; Zhang, J. L.; Xue, B. F.; Zhai, S. Y.; She, H. B.; Zhang, Y. C.; Cui, Z.; Fu, P.; Pang, X. C. et al. 3D-printed polyamide 12/styrene-acrylic copolymer-boron nitride (PA12/SA-BN) composite with macro and micro double anisotropic thermally conductive structures. Polymers 2023, 15, 2780.

[97]

Li, Q.; Guo, Y. F.; Li, W. W.; Qiu, S. Q.; Zhu, C.; Wei, X. F.; Chen, M. L.; Liu, C. J.; Liao, S. T.; Gong, Y. P. et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem. Mater. 2014, 26, 4459–4465.

[98]

Song, N.; Jiao, D. J.; Cui, S. Q.; Hou, X. S.; Ding, P.; Shi, L. Y. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 2017, 9, 2924–2932.

[99]

Jiao, D. J.; Song, N.; Ding, P.; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Compos. Commun. 2022, 31, 101101.

[100]

Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

[101]

Wang, Z. G.; Liu, W.; Liu, Y. H.; Ren, Y.; Li, Y. P.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B: Eng. 2020, 180, 107569.

[102]

Xiao, C.; Guo, Y. J.; Tang, Y. L.; Ding, J. W.; Zhang, X.; Zheng, K.; Tian, X. Y. Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/boron nitride nanosheets. Compos. Part B: Eng. 2020, 187, 107855.

[103]

Wang, H. H.; Huang, Z. Y.; Li, J.; Wang, F. P.; Feng, Z. Z.; Tian, H.; Zhao, H. S.; Li, L. C. Design of 3D printed bioinspired nacre-like structured materials with significantly enhanced thermal conductivity. Appl. Phys. Lett. 2021, 118, 131903.

[104]

Wang, X.; Ding, D. L.; Yang, Z.; Zhang, S. Y.; Sun, Z.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. GMP/Al2O3/ZnO/PDMS thermal interface materials with anisotropic thermal conductivity and electrical insulation ability obtained by 3D-printing method. Polym. Adv. Technol. 2024, 35, e6287.

[105]

Roudný, P.; Syrový, T. Thermal conductive composites for FDM 3D printing: A review, opportunities and obstacles, future directions. J. Manuf. Process. 2022, 83, 667–677.

[106]

Fan, Y.; Wang, Y. B.; Qiu, J. Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing. J. Appl. Polym. Sci. 2024, 141, e55500.

[107]

Liu, M. J.; Chiang, S. W.; Chu, X. D.; Li, J.; Gan, L.; He, Y. B.; Li, B. H.; Kang, F. Y.; Du, H. D. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram. Int. 2020, 46, 20810–20818.

[108]

Li, J. Q.; Leng, J.; Jiang, Y. X.; Zhang, J. Experimental characterization of 3D printed PP/h-BN thermally conductive composites with highly oriented h-BN and the effects of filler size. Compos. Part A: Appl. Sci. Manuf. 2021, 150, 106586.

[109]

Wang, H. H.; Huang, Z. Y.; Li, L. C.; Zhang, Y. F.; Li, J. Internal oriented strategy of the hBN composite resin with enhanced in-plane or through-plane thermal conductivity via 3D printing. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107638.

[110]

Gao, J.; Hao, M. Y.; Wang, Y. Y.; Kong, X. Y.; Yang, B.; Wang, R. G.; Lu, Y. L.; Zhang, L.; Gong, M.; Zhang, L. Q. et al. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit. Manuf. 2022, 56, 102897.

[111]

Lin, Z. Y.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.

[112]

Lim, H. S.; Oh, J. W.; Kim, S. Y.; Yoo, M. J.; Park, S. D.; Lee, W. S. Anisotropically alignable magnetic boron nitride platelets decorated with iron oxide nanoparticles. Chem. Mater. 2013, 25, 3315–3319.

[113]

Yuan, F.; Jiao, W. C.; Yang, F.; Liu, W. B.; Xu, Z. H.; Wang, R. G. Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Adv. 2017, 7, 43380–43389.

[114]

Xu, S.; Liu, H.; Li, Q. M.; Mu, Q. W.; Wen, H. Y. Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance. J. Mater. Chem. C 2016, 4, 872–878.

[115]

Kim, K.; Kim, J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos. Part B: Eng. 2016, 93, 67–74.

[116]

Kim, K.; Kim, M.; Kim, J.; Kim, J. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement. Ceram. Int. 2015, 41, 12280–12287.

[117]

Chung, S. H.; Kim, H.; Jeong, S. W. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon 2018, 140, 24–29.

[118]

Liu, M. R.; Younes, H.; Hong, H. P.; Peterson, G. P. Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 2019, 166, 81–87.

[119]

Yuan, J.; Qian, X. T.; Meng, Z. C.; Yang, B.; Liu, Z. Q. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 17915–17924.

[120]

Ma, H. Q.; Gao, B.; Wang, M. Y.; Feng, Y. K. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites. Polym. Adv. Technol. 2021, 32, 4318–4325.

[121]

Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M. Y.; Luo, X. B. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 2015, 7, 13000–13006.

[122]

He, Y. F.; Kuang, F. X.; Che, Z. X.; Sun, F. Y.; Zheng, K.; Zhang, J. N.; Cao, X. Y.; Ma, Y. M. Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos. Part A: Appl. Sci. Manuf. 2022, 157, 106933.

[123]

Dong, Y. X.; Zhang, Z. T.; Zhang, X. D.; Cao, B. Y. Orientation of graphene nanosheets in suspension under an electric field: Theoretical model and molecular dynamic simulations. J. Phys.: Condens. Matter 2024, 36, 255702.

[124]

Guo, X. Q.; Su, J. Y.; Guo, H. X. Electric field induced orientation and self-assembly of carbon nanotubes in water. Soft Matter 2012, 8, 1010–1016.

[125]

Daub, C. D.; Bratko, D.; Ali, T.; Luzar, A. Microscopic dynamics of the orientation of a hydrated nanoparticle in an electric field. Phys. Rev. Lett. 2009, 103, 207801.

[126]
Kinoshita, S.; Kozako, M.; Hikita, M.; Tanaka, T. Effect of electric field application during curing process on thermal conductivity of epoxy composite materials with low content inorganic particles. In 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, Canada, 2012, pp 183–190.
[127]

Wu, S. Y.; Ladani, R. B.; Zhang, J.; Bafekrpour, E.; Ghorbani, K.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 2015, 94, 607–618.

[128]

Zhang, Y. J.; Li, X. M.; Yan, C.; Wang, Y.; Zhu, X. J.; Jiang, W. T. Electric field-induced orientation of silicon carbide whiskers for directional and localized thermal management. J. Colloid Interface Sci. 2023, 648, 834–845.

[129]

Kim, K.; Ju, H.; Kim, J. Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceram. Int. 2016, 42, 8657–8663.

[130]

Cho, H. B.; Nakayama, T.; Tokoi, Y.; Endo, S.; Tanaka, S.; Suzuki, T.; Jiang, W. H.; Suematsu, H.; Niihara, K. Facile preparation of a polysiloxane-based hybrid composite with highly-oriented boron nitride nanosheets and an unmodified surface. Compos. Sci. Technol. 2010, 70, 1681–1686.

[131]

Mi, Y.; Liu, L. L.; Gui, L.; Ge, X. Effect of frequency of microsecond pulsed electric field on orientation of boron nitride nanosheets and thermal conductivity of epoxy resin-based composites. J. Appl. Phys. 2019, 126, 205105.

[132]

Yin, H. M.; Huang, Y. F.; Ren, Y.; Wang, P.; Zhao, B. S.; Li, J. H.; Xu, J. Z.; Li, Z. M. Toward biomimetic porous poly( ε-caprolactone) scaffolds: Structural evolution and morphological control during solid phase extrusion. Compos. Sci. Technol. 2018, 156, 192–202.

[133]

Shi, A.; Li, Y.; Liu, W.; Xu, J. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Compos. Sci. Technol. 2019, 184, 107858.

[134]

Huang, Y. F.; Wang, Z. G.; Yin, H. M.; Xu, J. Z.; Chen, Y. W.; Lei, J.; Zhu, L.; Gong, F.; Li, Z. M. Highly anisotropic, thermally conductive, and mechanically strong polymer composites with nacre-like structure for thermal management applications. ACS Appl. Nano Mater. 2018, 1, 3312–3320.

[135]

Zhang, X. M.; Zhang, J. J.; Xia, L. C.; Wang, J. F.; Li, C. H.; Xu, F.; Zhang, X. L.; Wu, H.; Guo, S. Y. Achieving high-efficiency and robust 3D thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution. Chem. Eng. J. 2018, 334, 247–256.

[136]

Zhang, X. M.; Zhang, J. J.; Zhang, X. L.; Li, C. H.; Wang, J. F.; Li, H.; Xia, L. C.; Wu, H.; Guo, S. Y. Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC. Compos. Sci. Technol. 2017, 150, 217–226.

[137]

Liu, Z. Q.; Yin, X. C.; Zhang, H.; Wang, M. M.; Feng, Y. H. Efficient preparation of BN/UHMWPE composites with oriented thermal conductivity by powder solid-state extrusion. Compos. Part A: Appl. Sci. Manuf. 2023, 172, 107598.

[138]

Kuang, Z. Q.; Chen, Y. L.; Lu, Y. L.; Liu, L.; Hu, S.; Wen, S. P.; Mao, Y. Y.; Zhang, L. Q. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 2015, 11, 1655–1659.

[139]

Xue, Y.; Wang, H. S.; Li, X. F.; Chen, Y. F. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106336.

[140]

Su, Z.; Wang, H.; Ye, X. Z.; Tian, K. H.; Huang, W. Q.; He, J.; Guo, Y. L.; Tian, X. Y. Synergistic enhancement of anisotropic thermal transport flexible polymer composites filled with multi-layer graphene (mG) and mussel-inspiring modified hexagonal boron nitride (h-BN). Compos. Part A: Appl. Sci. Manuf. 2018, 111, 12–22.

[141]

Han, W. H.; Wang, Q. Y.; Kang, Y. Y.; Zhou, X.; Hao, C. C. Electrospun polymer nanocomposites for thermal management: A review. Nanoscale 2023, 15, 2003–2017.

[142]

Terao, T.; Zhi, C. Y.; Bando, Y.; Mitome, M.; Tang, C. C.; Golberg, D. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 2010, 114, 4340–4344.

[143]

Han, Z. P.; Wang, J. Q.; Liu, S. P.; Zhang, Q. H.; Liu, Y. J.; Tan, Y. Q.; Luo, S. Y.; Guo, F.; Ma, J. Y.; Li, P. et al. Electrospinning of neat graphene nanofibers. Adv. Fiber Mater. 2022, 4, 268–279.

[144]

Pan, G. R.; Yao, Y. M.; Zeng, X. L.; Sun, J. J.; Hu, J. T.; Sun, R.; Xu, J. B.; Wong, C. P. Learning from natural nacre: Constructing layered polymer composites with high thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 33001–33010.

[145]

Sun, J. J.; Wang, D.; Yao, Y. M.; Zeng, X. L.; Pan, G. R.; Huang, Y.; Hu, J. T.; Sun, R.; Xu, J. B.; Wong, C. P. Boron nitride microsphere/epoxy composites with enhanced thermal conductivity. High Voltage 2017, 2, 147–153.

[146]

Song, Q. S.; Zhu, W.; Deng, Y.; Hai, F. X.; Wang, Y. L.; Guo, Z. P. Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material. Compos. Part A: Appl. Sci. Manuf. 2019, 127, 105654.

[147]

Song, N.; Cao, D. L.; Luo, X.; Guo, Y. Q.; Gu, J. W.; Ding, P. Aligned cellulose/nanodiamond plastics with high thermal conductivity. J. Mater. Chem. C 2018, 6, 13108–13113.

Nano Research
Cite this article:
Duan Y, Yu H, Zhang F, et al. Preparation technologies for polymer composites with high-directional thermal conductivity: A review. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6920-y
Topics:

207

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 July 2024
Revised: 23 July 2024
Accepted: 27 July 2024
Published: 20 August 2024
© Tsinghua University Press 2024
Return