AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries

Lin Sun1,2,3( )Yang Liu1,2Liyan Wang1Zhidong Chen2Zhong Jin3( )
Key Laboratory for Advanced Technology in Envirnmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Abstract

Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactions and low costs. However, they suffer from more severe volume expansion effects, making the construction of stable micro-sized Si/C anode materials crucial. In this study, we proposed a simple wet chemistry method to obtain porous micro-sized silicon (μP-Si) from waste AlSi alloys. Then, the μP-Si@carbon nanotubes (CNT)@C composite anode with high tap density was prepared by wrapping with CNT and coated with polyvinylpyrrolidone (PVP)-derived carbon. Electrochemical tests and finite element (FEM) simulations revealed that the introduction of CNTs and PVP-derived carbon synergistically optimize the stability and overall performance of the μP-Si electrode via construction of tough composite interface networks. As an anode material for LIBs, the μP-Si@CNT@C electrode exhibits boosted reversible capacity (~ 3500 mAh·g−1 at 0.2 A·g−1), lifetime and rate performance compared to pure μP-Si. Further full cell assembly and testing also indicates that μP-Si@CNT@C is a highly promising anode, with potential applications in future advanced LIBs. It is expected that this work can provide valuable insights for the development of micro-sized Si-based anode materials for high-energy-density LIBs.

Electronic Supplementary Material

Download File(s)
6937_ESM.pdf (2.4 MB)

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 1800561.

[3]

Sun, L.; Wang, F.; Su, T. T.; Du, H. B. Step-by-step assembly preparation of core–shell Si-mesoporous TiO2 composite nanospheres with enhanced lithium-storage properties. Dalton Trans. 2017, 46, 11542–11546.

[4]

Sehrawat, P.; Shabir, A.; Abid; Julien, C. M.; Islam, S. S. Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. J. Power Sources 2021, 501, 229709.

[5]

Je, M.; Han, D. Y.; Ryu, J.; Park, S. Constructing pure Si anodes for advanced lithium batteries. Acc. Chem. Res. 2023, 56, 2213–2224.

[6]

Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

[7]

Sun, L.; Xie, J.; Jin, Z. Different dimensional nanostructured silicon materials: From synthesis methodology to application in high-energy lithium-ion batteries. Energy Technol. 2019, 7, 1900962.

[8]

Choi, Y. H.; Park, H.; Lee, S.; Jeong, H. D. Synthesis and electrochemical performance of π-conjugated molecule bridged silicon quantum dot cluster as anode material for lithium-ion batteries. ACS Omega 2020, 5, 8629–8637.

[9]

Zhong, L. L.; Guo, J. C.; Mangolini, L. A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix. J. Power Sources 2015, 273, 638–644.

[10]

Ahad, S. A.; Kennedy, T.; Geaney, H. Si nanowires: From model system to practical Li-ion anode material and beyond. ACS Energy Lett. 2024, 9, 1548–1561.

[11]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[12]

Sun, L.; Su, T. T.; Xu, L.; Liu, M. P.; Du, H. B. Two-dimensional ultra-thin SiO x (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes. Chem. Commun. 2016, 52, 4341–4344.

[13]

Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiO x /C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2022, 15, 395–400.

[14]

Jia, H. P.; Li, X. L.; Song, J. H.; Zhang, X.; Luo, L. L.; He, Y.; Li, B. S.; Cai, Y.; Hu, S. Y.; Xiao, X. C. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474.

[15]

Sun, L.; Wang, F.; Su, T. T.; Du, H. B. Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes. ACS Appl. Mater. Interfaces 2017, 9, 40386–40393.

[16]

Choi, M.; Lee, E.; Sung, J.; Kim, N.; Ko, M. Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery. Nano Res. 2024, 17, 5270–5277.

[17]

Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

[18]
Sun, L.; Liu, Y.; Wang, L. J.; Jin, Z. Advances and future prospects of micro-silicon anodes for high-energy-density lithium-ion batteries: A comprehensive review. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202403032.
[19]

Li, H.; Chen, Z. D.; Kang, Z. R.; Liu, W.; Chen, Y. G. High-density crack-resistant Si-C microparticles for lithium ion batteries. Energy Storage Mater. 2023, 56, 40–49.

[20]

Zhang, B.; Liu, D.; Xie, H. M.; Wang, D.; Hu, C. G.; Dai, L. M. In-situ construction of chemically bonded conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries. J. Power Sources 2022, 539, 231591.

[21]

Zhao, Z. Y.; Han, J. W.; Chen, F. Q.; Xiao, J.; Zhao, Y. F.; Zhang, Y. F.; Kong, D. B.; Weng, Z.; Wu, S. C.; Yang, Q. H. Liquid metal remedies silicon microparticulates toward highly stable and superior volumetric lithium storage. Adv. Energy Mater. 2022, 12, 2103565.

[22]

Shi, Q. T.; Cheng, Y. H.; Wang, J. Q.; Zhou, J. H.; Ta, H. Q.; Lian, X. Y.; Kurtyka, K.; Trzebicka, B.; Gemming, T.; Rümmeli, M. H. Strain regulating and kinetics accelerating of micro-sized silicon anodes via dual-size hollow graphitic carbons conductive additives. Small 2023, 19, 2205284.

[23]

Ding, L.; Zhao, Y. R.; Omar, A.; Feng, W.; Hantusch, M.; Mikhailova, D. High long-term performance of 325-mesh silicon microparticle anodes in Li-ion batteries enabled by hierarchical structure of graphene oxide and DNA binder. Adv. Funct. Mater. 2024, 34, 2305934.

[24]

Rahman, M. M.; Mateti, S.; Sultana, I.; Hou, C. P.; Falin, A.; Cizek, P.; Glushenkov, A. M.; Chen, Y. End-of-life photovoltaic recycled silicon: A sustainable circular materials source for electronic industries. Adv. Energy Sustain. Res. 2021, 2, 2100081.

[25]

Yang, B. Y.; Liu, F.; Liu, Y. X.; Dong, J. Y.; Liu, M. H.; Wang, S.; Zhang, L. Self-assembled three-dimensional Si/carbon frameworks as promising lithium-ion battery anode. J. Power Sources 2023, 553, 232274.

[26]

Yu, W. J.; Liu, F.; Zhang, L. L.; Liu, Z. Y.; Wang, S. M.; Tong, H. Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes. Carbon 2022, 196, 92–101.

[27]

Wang, J. P.; Zhang, L.; Zhang, H. T. Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. Ionics 2018, 24, 3691–3698.

[28]

Jiang, X. W.; Sun, L.; Lu, Y. Y.; Wang, H. Y.; Shi, J. W.; Yang, L. D.; Zhang, L.; Lv, R. G.; Jin, Z. Ladderlike polysilsesquioxanes derived dual-carbon-buffer-shell structural silicon as stable anode materials for lithium-ion batteries. J. Power Sources 2024, 602, 234331.

[29]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[30]

Gu, L. H.; Han, J. J.; Chen, M. F.; Zhou, W. J.; Wang, X. F.; Xu, M.; Lin, H. C.; Liu, H. D.; Chen, H. X.; Chen, J. Z. et al. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Storage Mater. 2022, 52, 547–561.

[31]

Sun, L.; Su, T. T.; Xu, L.; Du, H. B. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes. Phys. Chem. Chem. Phys. 2016, 18, 1521–1525.

[32]

Park, J.; Suh, S.; Jeong, S.; Kim, H. J. New approach for the high electrochemical performance of silicon anode in lithium-ion battery: A rapid and large surface treatment using a high-energy pulsed laser. J. Power Sources 2021, 491, 229573.

[33]

Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Wu, F.; Chaudhary, A.; Ghimire, N.; Zhou, B.; Zhang, W. H. et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv. Energy Mater. 2019, 9, 1901486.

[34]

Li, J. T.; Swiatowska, J.; Seyeux, A.; Huang, L.; Maurice, V.; Sun, S. G.; Marcus, P. XPS and ToF-SIMS study of Sn-Co alloy thin films as anode for lithium ion battery. J. Power Sources 2010, 195, 8251–8257.

[35]

Han, F. J.; Chang, Z. H.; Wang, R. N.; Yun, F. L.; Wang, J.; Ma, C. X.; Zhang, Y.; Tang, L.; Ding, H. Y.; Lu, S. G. Isocyanate additives improve the low-temperature performance of LiNi0.8Mn0.1Co0.1O2. |SiOx@Graphite lithium-ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 20966–20976.

[36]

Kim, T. An artificial cathode–electrolyte interphase with flame retardant capability enabled by an organophosphorus compound for lithium metal batteries. J. Mater. Chem. A 2024, 12, 2902–2915.

[37]

Zhou, W. J.; Chen, J. Z.; Xu, X. W.; Han, X.; Chen, M. F.; Yang, L.; Hirano, S. I. Interface engineering of silicon and carbon by forming a graded protective sheath for high-capacity and long-durable lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15216–15225.

[38]

Ouyang, Q.; Li, G. S.; Zhang, X.; Zhao, X.; Wang, Y. W.; Wang, Q.; Fan, Z. P.; Wang, J. X.; Li, L. P. Towards high-capacity lithium ion batteries: Constructing hollow-structured SiO x -based nanocube anode via a sequential coating strategy. Chem. Eng. J. 2023, 460, 141762.

[39]

Li, P.; Hwang, J. Y.; Sun, Y. K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano 2019, 13, 2624–2633.

[40]

An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.

[41]

Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 2013, 46, 1216–1225.

[42]

Yang, Z. X.; Zhao, S. W.; Jiao, R. J.; Hao, G. Y.; Liu, Y. Y.; He, W. X.; Chen, J. W.; Jia, G. X.; Cui, J. L.; Li, S. H. Lignite-based hierarchical porous C/SiO x composites as high-performance anode for potassium-ion batteries. Energy Environ. Mater. 2024, 7, e12674.

Nano Research
Cite this article:
Sun L, Liu Y, Wang L, et al. Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6937-2
Topics:

254

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 July 2024
Revised: 01 August 2024
Accepted: 02 August 2024
Published: 30 August 2024
© Tsinghua University Press 2024
Return