Sort:
Research Article Issue
Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries
Nano Research 2024, 17(11): 9737-9745
Published: 30 August 2024
Abstract PDF (14 MB) Collect
Downloads:66

Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactions and low costs. However, they suffer from more severe volume expansion effects, making the construction of stable micro-sized Si/C anode materials crucial. In this study, we proposed a simple wet chemistry method to obtain porous micro-sized silicon (μP-Si) from waste AlSi alloys. Then, the μP-Si@carbon nanotubes (CNT)@C composite anode with high tap density was prepared by wrapping with CNT and coated with polyvinylpyrrolidone (PVP)-derived carbon. Electrochemical tests and finite element (FEM) simulations revealed that the introduction of CNTs and PVP-derived carbon synergistically optimize the stability and overall performance of the μP-Si electrode via construction of tough composite interface networks. As an anode material for LIBs, the μP-Si@CNT@C electrode exhibits boosted reversible capacity (~ 3500 mAh·g−1 at 0.2 A·g−1), lifetime and rate performance compared to pure μP-Si. Further full cell assembly and testing also indicates that μP-Si@CNT@C is a highly promising anode, with potential applications in future advanced LIBs. It is expected that this work can provide valuable insights for the development of micro-sized Si-based anode materials for high-energy-density LIBs.

Review Article Issue
A review of existing and emerging binders for silicon anodic Li-ion batteries
Nano Research 2023, 16(5): 6736-6752
Published: 14 February 2023
Abstract PDF (44.9 MB) Collect
Downloads:394

Silicon anodes have been extensively studied as a potential alternative to graphite ones for Li-ion batteries. However, their commercial application is limited by the issues of the poor structural and interfacial stability. In this regard, one of the key strategies for fully exploiting the capacity potential of Si-based anodes is to design robust conductive binder networks. Although the amount of binder in the electrode is small, it is, however, considered as a critical component of Si-based anodes for Li-ion batteries. In this review, a brief summary is given from the structural and functional aspects of the existing binders for Si anodes. In particular, three-dimensional and multifunctional polymeric binders with excellent electrical conductivity, flexibility, and adhesion prepared by chemical bonding, electrostatic and coordination interactions have become the focus of research, and are expected to accelerate the practical application of silicon anodes. Lastly, some suggestions for the future development of Si anodic binders are put forward.

Total 2