AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption

Tianbao Zhao1,2Di Lan1( )Zirui Jia3Zhenguo Gao2Guanglei Wu2( )
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
Show Author Information

Graphical Abstract

Multiple Schottky barriers and interfacial polarization exist between two-dimensional (2D) MoS2 and zero-dimensional (0D) Mo2C, and between 2D MoS2 and three-dimensional (3D) hierarchical porous carbon, and more importantly, impedance matching is optimized.

Abstract

With the accelerating development of electronic technology, how to effectively eliminate electromagnetic radiation pollution has become a critical issue. Electromagnetic wave (EMW) absorption materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. In order to cope with the complicated electromagnetic environment, the design of multifunctional and multiband high-efficiency EMW absorbers remains a daunting challenge. In this work, a hierarchical porous molybdenum carbide matrix with a three-dimensional porous structure was designed by salt melt synthesis (SMS) strategy. Furthermore, the relationship between the structure and the impedance matching performance was explored by stepwise modification via ultrathin layered MoS2 nanoflakes. Analysis indicates that the extent of modification of hierarchical porous molybdenum carbide by MoS2 nanoflakes modulates the dielectric performance due to differences in morphology and the introduction of heterogeneous structures, along with a dramatic impact on the impedance matching performance. In particular, the prepared MS/MC/PNC-2 composite exhibits a reflection loss (RL) of −55.30 dB at 2.4 mm, and an ultra-broad effective absorption bandwidth (EAB) of 7.60 GHz is obtained at 2.0 mm. The coordination of structure and component enables the absorber to exhibit strong absorption, wide bandwidth, thin thickness, and multi-band absorption characteristics. Noticeably, the effective absorption performance in the broadband for X and Ku is also satisfying, as well as possessing moderate marine anti-corrosion performance. This study contributes to an in-depth understanding of the relationship between impedance matching and EMW absorber performance and provides a reference for the design of multifunctional, multiband microwave absorbing materials.

Electronic Supplementary Material

Download File(s)
6938_ESM.pdf (1.3 MB)

References

[1]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[2]

Qiao, J.; Song, Q. H.; Zhang, X.; Zhao, S. Y.; Liu, J. R.; Nyström, G.; Zeng, Z. H. Enhancing interface connectivity for multifunctional magnetic carbon aerogels: An in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Adv. Sci. 2024, 11, 2400403.

[3]

Liu, P. B.; Zheng, S. Y.; He, Z. Z.; Qu, C.; Zhang, L. Q.; Ouyang, B.; Wu, F.; Kong, J. Optimizing integrated-loss capacities via asymmetric electronic environments for highly efficient electromagnetic wave absorption. Small 2024, 20, 2403903.

[4]

Jia, R. X.; Zhang, R.; Yu, L. B.; Kong, X. L.; Bao, S. C.; Tu, M. Y.; Liu, X. H.; Xu, B. H. Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage. J. Colloid Interface Sci. 2023, 630, 86–98.

[5]

Yan, J.; Ye, Z. D.; Lan, D.; Chen, W. X.; Jia, Z. R.; Wu, G. L. Transition metal carbides towards electromagnetic wave absorption application: State of the art and perspectives. Compos. Commun. 2024, 48, 101954.

[6]
Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202403397.
[7]
Qiao, J.; Song, Q. H.; Xuan, L. X.; Liu, J. R.; Zhang, X.; Zheng, S. N.; Lin, J. P.; Cai, W. Q.; Zhang, Q. D.; Zeng, Z. H. et al. Dual cross-linked magnetic MXene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202401687.
[8]

Ma, G. J.; Lan, D.; Zhang, Y.; Sun, X. Y.; Jia, Z. R.; Wu, G. L.; Bu, G. X.; Yin, P. F. Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection. Small 2024, 20, 2404449.

[9]

Yang, X.; Xuan, L. X.; Men, W. W.; Wu, X.; Lan, D.; Shi, Y. P.; Jia, H. X.; Duan, Y. P. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 2024, 491, 151862.

[10]

Li, B.; Tian, H. Y.; Li, L.; Liu, W.; Liu, J. R.; Zeng, Z. H.; Wu, N. Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. 2024, 34, 2314653.

[11]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[12]

Chen, X. L.; Zhang, F.; Lan, D.; Zhang, S. J.; Du, S. X.; Zhao, Z. W.; Ji, G. B.; Wu, G. L. State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source. Adv. Compos. Hybrid Mater. 2023, 6, 220.

[13]

Pan, F.; Shi, Y. Y.; Yang, Y.; Guo, H. T.; Li, L. X.; Jiang, H. J.; Wang, X.; Zeng, Z. H.; Lu, W. Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 2024, 36, 2311135.

[14]

Han, Y.; Han, M. J.; Zhao, T. B.; Xia, Z. H.; Zou, J. X.; Liu, X. H.; Jia, Z. R. Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption. Mater. Res. Bull. 2024, 172, 112670.

[15]

Feng, A. L.; Zhu, X.; Chen, Y. N.; Liu, P. T.; Han, F. B.; Zu, Y. Q.; Li, X. D.; Bi, P. F. Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem 2024, 11, e202400086.

[16]

Lian, Y. Y.; Lan, D.; Jiang, X. D.; Wang, L.; Yan, S.; Dong, Q. Z.; Jiang, Y.; Gu, J. W.; Gao, Z. G.; Wu, G. L. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2T X MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci. 2024, 676, 217–226.

[17]

Zhang, X.; Tian, X. L.; Wu, N.; Zhao, S. Y.; Qin, Y. T.; Pan, F.; Yue, S. Y.; Ma, X. Y.; Qiao, J.; Xu, W. et al. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 2024, 10, eadl6498.

[18]

Zeng, J. Q.; Qi, P. F.; Wang, Y.; Liu, Y. H.; Sui, K. Y. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 2021, 410, 124633.

[19]

Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

[20]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405523.
[21]
Xiao, J. X.; Zhan, B. B.; He, M. K.; Qi, X. S.; Gong, X.; Yang, J. L.; Qu, Y. P.; Ding, J. F.; Zhong, W.; Gu, J. W. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316722.
[22]

Lan, D.; Hu, Y.; Wang, M.; Wang, Y.; Gao, Z. G.; Jia, Z. R. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands. Compos. Commun. 2024, 50, 101993.

[23]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B: Eng. 2019, 176, 107240.

[24]

Cao, X. L.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 187.

[25]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[26]
Han, M. J.; Lan, D.; Zhang, Z. M.; Zhao, Y. Z.; Zou, J. X.; Gao, Z. G.; Wu, G. L.; Jia, Z. R. Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol., in press, DOI: 10.1016/j.jmst.2024.07.014.
[27]

Hong, Y.; Liu, Y.; Wu, J. Z.; Li, Y.; Wu, X. H. Enhanced tunability of broadband microwave absorption for MoSe2/FeSe2 nanocomposites with a unique heterostructure. Ind. Eng. Chem. Res. 2022, 61, 5807–5815.

[28]
Han, Y.; Lan, D.; Han, M. J.; Xia, Z. H.; Zou, J. X.; Jia, Z. R. Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber. Nano Res. 2024, 17, 8250–8260.
[29]

Yang, J. M.; Wang, H.; Zhang, Y. L.; Zhang, H. X.; Gu, J. W. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2024, 16, 31.

[30]

Zhou, Z. H.; Zhou, X. F.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 2024, 20, 2305849.

[31]

Fu, X. Y.; Zheng, Q.; Li, L.; Cao, M. S. Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption. Carbon 2022, 197, 324–333.

[32]
Zhang, S. J.; Lan, D.; Zheng, J. J.; Chen, X. L.; Feng, A. L.; Pei, Y. X.; Cai, S. C.; Du, S. X.; Wu, G. L.; Jia, Z. R. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater., in press, DOI: 10.1007/s12613-024-2875-y.
[33]

Wan, Y. C.; Zheng, M. Y.; Lv, R. T. Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Mater. Today Energy 2023, 32, 101240.

[34]

Liu, X. F.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265.

[35]
Xie, X. B.; Wang, H. S.; Kimura, H.; Ni, C.; Du, W.; Wu, G. L. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., in press, DOI: 10.1007/s12613-024-2880-1.
[36]

Gong, K. J.; Peng, Y. M.; Liu, A.; Qi, S. H.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A: Appl. Sci. Manuf. 2024, 176, 107857.

[37]

Ma, T. B.; Zhang, Y. L.; Ruan, K. P.; Guo, H.; He, M. K.; Shi, X. T.; Guo, Y. Q.; Kong, J.; Gu, J. W. Advances in 3D printing for polymer composites: A review. InfoMat 2024, 6, e12568.

[38]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B: Eng. 2020, 202, 108406.

[39]

Feng, A. L.; Liu, L.; Liu, P. T.; Zu, Y. Q.; Han, F. B.; Li, X. D.; Ding, S. J.; Chen, Y. N. Interfacial nanoparticles of Co2P/Co3Fe7 encapsulated in N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Energy 2024, 44, 101626.

[40]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[41]

Li, J. J.; Lan, D.; Cheng, Y. H.; Jia, Z. R.; Liu, P. B.; Shi, X. T.; Guo, H.; Feng, A. L.; Feng, X.; Wu, G. L. et al. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: An effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 2024, 196, 60–70.

[42]

Sun, M. X.; Wang, D. R.; Xiong, Z. M.; Zhang, Z. W.; Qin, L.; Chen, C. C.; Wu, F.; Liu, P. B. Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 2022, 130, 176–183.

[43]

Zhao, T. B.; Jia, Z. R.; Liu, J. K.; Zhang, Y.; Wu, G. L.; Yin, P. F. Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 2024, 16, 6.

[44]

Liu, J. K.; Jia, Z. R.; Dong, Y. H.; Li, J. J.; Cao, X. L.; Wu, G. L. Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 2022, 27, 100801.

[45]

Yuan, M. Y.; Lv, H. L.; Cheng, H. W.; Zhao, B.; Chen, G. Y.; Zhang, J. C.; Che, R. C. Atomic and electronic reconstruction in defective 0D molybdenum carbide heterostructure for regulating lower-frequency microwaves. Adv. Funct. Mater. 2023, 33, 2302003.

[46]

Feng, A. L.; Lan, D.; Liu, J. K.; Wu, G. L.; Jia, Z. R. Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol. 2024, 180, 1–11.

[47]

Hao, H. C.; Wang, Y. X.; Katyal, N.; Yang, G.; Dong, H.; Liu, P. C.; Hwang, S.; Mantha, J.; Henkelman, G.; Xu, Y. X. et al. Molybdenum carbide electrocatalyst in situ embedded in porous nitrogen-rich carbon nanotubes promotes rapid kinetics in sodium-metal-sulfur batteries. Adv. Mater. 2022, 34, 2106572.

[48]

Kim, S.; Choi, C.; Hwang, J.; Park, J.; Jeong, J.; Jun, H.; Lee, S.; Kim, S. K.; Jang, J. H.; Jung, Y. et al. Interaction mediator assisted synthesis of mesoporous molybdenum carbide: Mo-valence state adjustment for optimizing hydrogen evolution. ACS Nano 2020, 14, 4988–4999.

[49]

Bai, R.; Yan, W. F.; Xiao, Y.; Wang, S. Q.; Tian, X. C.; Li, J. P.; Xiao, X. F.; Lu, X. Q.; Zhao, F. Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chem. Eng. J. 2020, 397, 125501.

[50]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[51]

Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

[52]

Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Toward enhanced photocatalytic oxygen evolution: Synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection. Adv. Mater. 2015, 27, 3444–3452.

[53]

Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.

[54]

Lang, Q. Q.; Chen, Y. H.; Huang, T. L.; Yang, L. N.; Zhong, S. X.; Wu, L. J.; Chen, J. R.; Bai, S. Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 220, 182–190.

[55]

Du, J. F.; Shen, Y. L.; Yang, F.; Zhang, B.; Jiang, X. Z.; An, C. H.; Ye, J. H. In situ construction of an α-MoC/g-C3N4 Mott-Schottky heterojunction with high-speed electron transfer channel for efficient photocatalytic H2 evolution. Inorg. Chem. Front. 2023, 10, 832–840.

[56]

Pajkossy, T.; Jurczakowski, R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 2017, 1, 53–58.

[57]

Yin, P. F.; Lan, D.; Lu, C. F.; Jia, Z. R.; Feng, A. L.; Liu, P. B.; Shi, X. T.; Guo, H.; Wu, G. L.; Wang, J. Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 2025, 204, 204–223.

[58]
Zhang, F.; Li, N.; Shi, J. F.; Wang, Y. Y.; Yan, D. X.; Li, Z. M. Cation bimetallic MOF anchored carbon fiber for highly efficient microwave absorption. Small, in press, DOI: 10.1002/smll.202312135.
[59]

Zhou, J. X.; Huang, X. M.; Lan, D.; Cheng, Y. H.; Xue, F. Y.; Jia, C. Y.; Wu, G. L.; Jia, Z. R. Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res. 2024, 17, 2050–2060.

[60]

Tan, D. L.; Wang, Q.; Li, M. R.; Song, L. M.; Zhang, F.; Min, Z. Y.; Wang, H. L.; Zhu, Y. Q.; Zhang, R.; Lan, D. et al. Magnetic media synergistic carbon fiber@ Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2024, 492, 152245.

[61]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[62]

Liu, P. B.; Gao, S.; Liu, X. D.; Huang, Y.; He, W. J.; Li, Y. T. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Part B: Eng. 2020, 192, 107992.

[63]

Gao, Z. G.; Lan, D.; Ren, X. Y.; Jia, Z. R.; Wu, G. L. Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 2024, 48, 101922.

[64]

Zhang, F.; Li, N.; Shi, J. F.; Xu, L.; Jia, L. C.; Wang, Y. Y.; Yan, D. X. Recent progress on carbon-based microwave absorption materials for multifunctional applications: A review. Compos. Part B: Eng. 2024, 283, 111646.

[65]

Zhang, Q. L.; Lan, D.; Deng, S. L.; Gu, J. W.; Wang, Y. Q.; Ren, J. W.; Wu, G. L.; Jia, Z. R. Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 2024, 226, 119233.

[66]

Su, X. G.; Zhang, Y.; Wang, J.; Liu, Y. Q. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 2024, 12, 7775–7783.

[67]

Dong, Y. H.; Lan, D.; Xu, S.; Gu, J. W.; Jia, Z. R.; Wu, G. L. Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 2024, 228, 119339.

[68]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[69]

Huang, X. M.; Liu, X. H.; Zhang, Y.; Zhou, J. X.; Wu, G. L.; Jia, Z. R. Construction of NiCeO x nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 147, 16–25.

[70]
Zheng, S. N.; Xu, W. L.; Liu, J. R.; Pan, F.; Zhao, S. Y.; Wang, Y. D.; Zeng, Z. H.; Wu, N. One-hour ambient-pressure-dried, scalable, stretchable MXene/polyurea aerogel enables synergistic defense against high-frequency mechanical shock and electromagnetic waves. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402889.
[71]

Hao, Z. W.; Zhou, J.; Lin, S. N.; Lan, D.; Li, H. Y.; Wang, H.; Liu, D.; Gu, J. W.; Wang, X. B.; Wu, G. L. Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 2024, 228, 119323.

[72]

Wen, J. H.; Lan, D.; Wang, Y. Q.; Ren, L. G.; Feng, A. L.; Jia, Z. R.; Wu, G. L. Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater. 2024, 31, 1701–1712.

[73]

Wu, N. N.; Zhao, B. B.; Lian, Y. Y.; Liu, S. S.; Xian, Y.; Gu, J. W.; Wu, G. L. Metal organic frameworks derived Ni x Se y @NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 2024, 226, 119215.

[74]

Chen, X. L.; Lan, D.; Zhou, L. T.; Zeng, Z.; Liu, Y. K.; Du, S. X.; Zou, Z. Y.; Wu, G. L. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 2024, 50, 24549–24557.

[75]

Shen, Z. Y.; Lan, D.; Cong, Y.; Lian, Y. Y.; Wu, N. N.; Jia, Z. R. Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 2024, 181, 128–137.

[76]

Lan, D.; Li, H. F.; Wang, M.; Ren, Y. J.; Zhang, J.; Zhang, M. Q.; Ouyang, L. X.; Tang, J.; Wang, Y. Y. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630.

[77]

Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res. 2024, 17, 1952–1983.

[78]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[79]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricitiy harvester. Nat. Commun. 2021, 12, 834.

[80]

Zhou, J. X.; Lan, D.; Zhang, F.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 2023, 19, 2304932.

[81]

Liang, L. L.; Liu, Z.; Xie, L. J.; Chen, J. P.; Jia, H.; Kong, Q. Q.; Sun, G. H.; Chen, C. M. Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon 2021, 171, 142–153.

[82]

Li, X. D.; Zhu, X.; Feng, A. L.; An, M. M.; Liu, P. T.; Zu, Y. Q. Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 2024, 29, 5667–5680.

Nano Research
Pages 9845-9856
Cite this article:
Zhao T, Lan D, Jia Z, et al. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Research, 2024, 17(11): 9845-9856. https://doi.org/10.1007/s12274-024-6938-1
Topics:

501

Views

30

Crossref

30

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 15 July 2024
Revised: 31 July 2024
Accepted: 03 August 2024
Published: 12 September 2024
© Tsinghua University Press 2024
Return