Sort:
Research Article Online First
Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption
Nano Research
Published: 12 September 2024
Abstract PDF (25.4 MB) Collect
Downloads:13

With the accelerating development of electronic technology, how to effectively eliminate electromagnetic radiation pollution has become a critical issue. Electromagnetic wave (EMW) absorption materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. In order to cope with the complicated electromagnetic environment, the design of multifunctional and multiband high-efficiency EMW absorbers remains a daunting challenge. In this work, a hierarchical porous molybdenum carbide matrix with a three-dimensional porous structure was designed by salt melt synthesis (SMS) strategy. Furthermore, the relationship between the structure and the impedance matching performance was explored by stepwise modification via ultrathin layered MoS2 nanoflakes. Analysis indicates that the extent of modification of hierarchical porous molybdenum carbide by MoS2 nanoflakes modulates the dielectric performance due to differences in morphology and the introduction of heterogeneous structures, along with a dramatic impact on the impedance matching performance. In particular, the prepared MS/MC/PNC-2 composite exhibits a reflection loss (RL) of −55.30 dB at 2.4 mm, and an ultra-broad effective absorption bandwidth (EAB) of 7.60 GHz is obtained at 2.0 mm. The coordination of structure and component enables the absorber to exhibit strong absorption, wide bandwidth, thin thickness, and multi-band absorption characteristics. Noticeably, the effective absorption performance in the broadband for X and Ku is also satisfying, as well as possessing moderate marine anti-corrosion performance. This study contributes to an in-depth understanding of the relationship between impedance matching and EMW absorber performance and provides a reference for the design of multifunctional, multiband microwave absorbing materials.

Research Article Online First
Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption
Nano Research
Published: 03 September 2024
Abstract PDF (6.2 MB) Collect
Downloads:15

Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulation on the electromagnetic wave absorption capacity of materials is considered. In this paper, a new type of three-dimensional porous carbon matrix composite is reported utilizing a reasonable design of surface impedance matching. Specifically, a thin layer of densely arranged Fe-Cr oxide particles is deposited on the surface of porous carbon via thermal reduction to prepare the Fe-Cr-O@PC composites. The effect of Cr doping on the electromagnetic wave absorption performance of the composites and the underlying attenuation mechanism have been uncovered. Consequently, outstanding electromagnetic wave absorption performance has been achieved in the composite, primarily contributed by the enhanced dielectric loss upon Cr doping. Accordingly, an effective absorption bandwidth of 4.08 GHz is achieved at a thickness of 1.4 mm, with a minimum reflection loss value of –52.71 dB. This work not only provides inspiration for the development of novel absorbers with superior performance but also holds significant potential for further advancement and practical application.

Total 2